TRANSIMS Training Course at TRACC
Transportation Research and Analysis Computing Center

Part 2

Modeling of Street and Transit Networks in TRANSIMS

Dr.-Ing. Hubert Ley
Transportation Research and Analysis Computing Center

Last Updated: April 21, 2008
Contents

- Introduction
- Summary
- Description of TransimsNet
- Description of IntControl
- TRANSIMS Network Tables in Detail
- Typical Data Sources
- Recap of a Typical Network Conversion Procedure
Introduction

The TRANSIMS Transportation Network provides detailed information for the router and the microsimulator about:

- Streets
- Lanes
- Intersections
- Connectivity
- Signals
- Parking
- Transit Stops
- Transit Routes
- Land Use Activity Data

Major TRANSIMS Network Tables

- Node Table
- Link Table
- Pocket Lane Table
- Parking Table
- Activity Locations Table
- Process Links Table
- Transit Stops Table
- Lane Connectivity Table
- Signals and Phases
- Unsignalized Nodes
The TransimsNet Utility

- TransimsNet converts typically available road network tables into a much more detailed network for use in TRANSIMS
- Input tables for TransimsNet are
 - Nodes Table
 - Node identifiers
 - The x and y coordinates in UTM meters (with an optional z)
 - Links Table
 - Links are identified by the start and end node identifiers
 - Length of the link (in meters)
 - Number of lanes in both directions (meters per second)
 - Speed limits in both directions (meters per second)
 - Link capacities in both directions (vehicles per hour and link)
 - Facility types in form of typical strings (MAJOR, MINOR, etc)
 - Vehicle types separated by “/” characters
 - Toll cost fields
The TransimsNet Utility

- Zones Table (for the center coordinates of traffic analysis zones)
 - Zone identifiers
 - The x and y coordinates (in meters)
 - Area type identifier (for up to 8 area types)

- Shape Point Table
 - Applies to the link table
 - Provides shapes to the links to better follow road segments
 - Contains x and y coordinates of shape points for each applicable link

- Keep Nodes Table
 - TransimsNet tries to remove unnecessary nodes by placing them into the newly generated shape point table
 - Nodes listed in this table are preserved even if no links connect to them (can be necessary for transit routes and similar)

- Turn Prohibition Table
TRANSIMS Tools - Conversion of Road Networks

Sample input tables for:
- Nodes
- Links
- Zones
- Shapes (not shown)

<table>
<thead>
<tr>
<th>NODE</th>
<th>XCOORD</th>
<th>YCOORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1945</td>
<td>428121</td>
<td>4748132</td>
</tr>
<tr>
<td>1946</td>
<td>424938</td>
<td>4753691.5</td>
</tr>
<tr>
<td>1947</td>
<td>412534</td>
<td>4746420</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5001</td>
<td>327590.3</td>
<td>4581616.5</td>
</tr>
<tr>
<td>5002</td>
<td>327595.4</td>
<td>4581687.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZONE</th>
<th>XCOORD</th>
<th>YCOORD</th>
<th>AREATYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>446306.5</td>
<td>4638415</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>446724.4</td>
<td>4638426</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>447302.5</td>
<td>4638440</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>447672.9</td>
<td>4638431</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>448209.2</td>
<td>4638283</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANODE</th>
<th>BNODE</th>
<th>LENGTH</th>
<th>LANES_AB</th>
<th>LANES_BA</th>
<th>SPEED_AB</th>
<th>SPEED_BA</th>
<th>CAP_AB</th>
<th>CAP_BA</th>
<th>STREET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1945</td>
<td>19688</td>
<td>4409.60</td>
<td>3</td>
<td>3</td>
<td>24.58</td>
<td>24.58</td>
<td>2430.0</td>
<td>5400.0</td>
<td></td>
</tr>
<tr>
<td>1946</td>
<td>11223</td>
<td>1367.94</td>
<td>3</td>
<td>0</td>
<td>29.05</td>
<td>0.0</td>
<td>6000.0</td>
<td>0.0</td>
<td>I-90</td>
</tr>
<tr>
<td>1947</td>
<td>8666</td>
<td>6099.41</td>
<td>2</td>
<td>2</td>
<td>24.58</td>
<td>24.58</td>
<td>4000.0</td>
<td>4000.0</td>
<td>I-88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>USE</th>
<th>TOLL_AB</th>
<th>TOLL_BA</th>
<th>STREET</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZONE</td>
<td>AUTO/TRUCK/WALK</td>
<td>0.0</td>
<td>0.0</td>
<td>I-90</td>
</tr>
<tr>
<td>ZONE</td>
<td>AUTO/TRUCK</td>
<td>0.0</td>
<td>0.0</td>
<td>I-88</td>
</tr>
<tr>
<td>ZONE</td>
<td>AUTO/TRUCK/BUS</td>
<td>0.0</td>
<td>0.0</td>
<td>I-55</td>
</tr>
</tbody>
</table>
The TransimsNet Utility

- TransimsNet takes a number of parameters to generate an extensive set of properly correlated network tables for use in the router, microsimulator, and other related tools
 - A matrix of pocket lane lengths for facility type versus area type
 - Criteria for signal placement based on facility types and area types
 - Criteria for stop sign placement based on facility types and area types
 - Criteria for placing activity locations along suitable links
 - Intersection setback distance
 - Activity location side offset
 - Minimum link length
 - Maximum length to x/y ratio
 - Maximum connection angle
 - Controls for the treatment of unnecessary nodes
 - Controls for adding U-turns to dead-end links
 - Specification of the first external zone (see next slide)
The TransimsNet Utility

- **Area Types**
 - TRANSIMS allows for up to 8 area types provided as part of the traffic analysis zone table
 - Area types describe areas with similar characteristics, such as rules for placing signs, signals, pocket lanes, and other road features

- **External Zones**
 - External zones are different from regular traffic analysis zones, providing a mechanism to feed external traffic onto the network.
 - External zones must be specified as the last zones (the zones with the highest identifiers) in the input zone table
 - Node identifiers with x and y values identical to the zone centroids must be placed in the node table
 - Regular network nodes have typically identifiers that start at a higher number, e.g. in the Chicago model, with 5000
 - That leaves enough identifier space for the 1961 zones with corresponding node identifiers (external starts at 1950)
The TransimsNet Utility

- TransimsNet produces the following network tables from the limited set of input data
 - Nodes
 - Links
 - Link Shapes
 - Activity Locations
 - Parking Lots
 - Process Links
 - Pocket Lanes
 - Lane Connectivity
 - Sign Warrants
 - Signal Warrants
 - Link-Node Equivalencies

- This is an intermediate set of network tables. The network will be completed by IntControl and TransitNet (next slide)
The IntControl Utility

- TransimsNet produces
 - Sign Warrants and
 - Signal Warrants
- These are intermediate tables that may need to be edited by the user to more closely specify the locations of traffic controls such as signals and signs
- IntControl uses these tables to create
 - Unsignalized Nodes
 - Signalized Nodes
 - Timing Plan
 - Phasing Plan
 - Detector
 - Signal Coordinator
- This completes the road network for vehicular traffic (nodes and links for transit should be included and coded in the input files already)
Network Tables

- More details on many of the previously mentioned network tables are provided on the following slides
- Most of these tables can be converted to GIS shape files for easy visualization
Network Tables - Nodes

- Network nodes are placed onto the roadway network where
 - The roadways form an intersection
 - The roadway branches out
 - A change in the number of permanent lanes occurs
 - A road ends

- A node defines the location of an intersection, but intersection properties are defined in other network files for e.g.
 - Lane connectivity
 - Traffic signals
 - Pocket lanes
 - Lane Restrictions
Network Tables - Links

- Links are placed on the network to represent node interconnections
 - Links represent roadways, walkways, rail lines, etc.
 - Links always connect two nodes
 - Links are bidirectional unless specified as unidirectional
 - Each node can be connected to several links
 - Links can be multi-modal, e.g. light rail on city streets
 - Links are used to specify road and intersection properties
 - Posted speed limits and free speeds
 - Number of permanent lanes
 - Functional classes
 - And many more details
Network Tables - Links

- Properties of network links
 - Street names
 - Identifiers for the nodes connected by this link
 - Number of lanes on the link in each direction
 - Number of pocket lanes on the left and right in both directions
 - Effective length of the link (including curvature)
 - Setback distances from the center of both intersections
 - Default speed limit for vehicles traveling in each direction
 - Default free flow speed for vehicles traveling in each direction
 - Functional class of this link
 - Freeway, Expressway, Arterial,
 - Local, Ramp, Walkway, etc
 - Default lane connectivity at both end nodes (link to link)
 - Vehicle types allowed to use link (separated by “/”)

- TRANSIMS supports shape points on links for curved road segments using a special shape point table
Network Tables – Pocket Lanes

- Pocket lanes are more finely described as
 - Turn, merge, and pullout lanes
 - Permanent lanes that are not present for the entire length of a link

- Properties of pocket lanes
 - Identifier of the node toward which the pocket lane leads
 - Identifier of the link on which the pocket lane lies
 - Starting position of pocket lane
 - Lane number of pocket lane
 - Types: T = turn pocket; P = pull-out pocket; M = merge pocket
 - Length of the pocket lane
Network Tables – Lane Use and Speed Restrictions

- Lane use can be restricted according to a number of criteria
- Properties of lane use records
 - The corresponding link identifier and lane identifier (0 means all lanes)
 - The node towards which the lane leads
 - The vehicle type to which the restriction applies
 - The type of restriction
 - High occupancy lane, bicycle, auto, truck, bus, rail
 - The start and end time of the restriction

- In addition to speed limits and free speeds in the link table, further modifications can be made for each lane
 - Not in Version 4

- Properties of speed restriction records are
 - IDs of the node and link towards which the lane leads
 - The vehicle type to which the restriction applies
 - Speed limit and free speed
 - The start and end time of the restriction
Network Tables – Lane Connectivity

- Lane connectivity records specify all the movements allowed at a node
- Properties of lane connectivity records
 - The node identifier
 - The incoming link identifier
 - The outgoing link identifier
 - The lane number of the incoming lane
 - The lane number of the outgoing lane
- This information is essential for the router and the microsimulator and is not typically found in existing network data
- Tools exist to create automatic connections, but manual editing is important to ensure correct representation of intersections
Network Tables – Traffic Signals

- Just like on a real street network, traffic signals are essential to support the effective flow of traffic in a simulated network.
- Traffic signals are described with a set of tables:
 - Signalized node table
 - Phasing plan table
 - Timing plan table
 - Detector table
 - Signal Coordinator table
- Programs exist to place traffic signals heuristically (TransimsNet, IntControl).
- Traffic signals and traffic signal coordination require a significant amount of work to create a representative simulation.
- Traffic signal data is hard to obtain.
- Traffic signal timings and phases may change during the course of a day.
Network Tables – Unsignalized Intersections and Turn Prohibitions

- Unsignalized intersections may have “Stop” or “Yield” signs
- Programs exist to place intersections heuristically (TransimsNet, IntControl)
- Properties of unsignalized intersection records
 - The node identifier
 - The link identifier
 - The type of sign
 - Stop, Yield, None

- Turn prohibitions can be specified in detail
 - The identifier of the node
 - The identifier of the incoming link
 - The identifier of the outgoing link
 - The start and end time for this prohibition
Network Tables – Parking Locations

- Vehicles enter and exit links at parking locations
- Programs exist to place parking heuristically (TransimsNet)
- Links may have
 - Many or no parking locations
 - Real or generalized parking
- Parking locations are typically placed
 - On all roads except freeways and ramps
 - Several activity locations and
 - parking lots on each side of
 - each link
- For highly populated areas
 - Parking may be specified more precisely
 - Consider proximity to activity locations
Network Tables – Parking Locations

- Properties of parking locations
 - Identifier of the node toward which vehicles are traveling
 - Identifier of the link on which the parking place lies
 - Location of the parking location
 - Type of parking location
 - \textit{parallel on street, head in on street, driveway}
 - \textit{parking lot, park} \& \textit{ride lot, network boundary}
 - Number of vehicles the parking place can accommodate
 - Toggle indicates whether parking place represents generic parking
 - Type of vehicles allowed to park at parking place
 - \textit{private auto, motor carrier, bicycle}
 - \textit{paratransit, bus, streetcar}
 - \textit{light-rail transit, any vehicle type}
Network Tables – Activity Locations

- Activity locations will be discussed in more detail in other presentations.
- They are essential as the beginning and end of each trip and provide the actual precise location for any activity (home, work, school, hospital, etc.).
- Properties of activity locations:
 - The identifier of the node toward which vehicles are traveling.
 - The identifier of the link on which the activity location lies.
 - The traffic analysis zone number in which the activity lies.
 - The census tract number in which the activity lies (optional).
 - The census block group number in which the activity lies (optional).
 - The distance of the activity from the node toward which vehicles are traveling.
 - The x-coordinate of the activity location.
 - The y-coordinate of the activity location.
 - The z-coordinate of the activity location (optional).
Network Tables – Process Links

- Process links allow for traveler movement between
 - Parking locations
 - Activity locations
 - Transit stops
- Process links are unidirectional; therefore, two process links are typically necessary to connect locations
- Process links can be interpreted as walk links (in addition to the specific walk network)
- They have associated delays and costs
Network Tables - Process Links

- Properties of process links
 - Identifier of the accessory from which the virtual link leaves
 - Type of accessory from which the virtual link leaves
 - Activity, Parking, Transit
 - Identifier of the accessory to which the virtual link leads
 - Type of accessory to which the virtual link leads
 - Activity, Parking, Transit
 - Delay incurred when traveling across the virtual link
 - Cost incurred when traveling across the virtual link
Network Tables – Transit Stops

- Where passengers board and leave transit vehicles
- Multiple transit lines may share a transit stop
- Can be connected by process links to
 - Other transit stops
 - Parking locations
 - Activity locations

- Properties of transit stops
 - Name of the stop
 - Identifier of the node toward which vehicles are traveling
 - Identifier of the link on which the stop takes place
 - Location of the stop
 - Types of vehicles for which this is a stop
 - Type of stop (stop or station)
 - Number of vehicles the stop can handle simultaneously
Network Tables – Transit Routes

- This table specifies the list of stops and other details on how the transit vehicle travels
- Properties of transit routes
 - Number of stops
 - Specific transit type
 - Bus, trolley, streetcar, rail, etc.
 - The identifier of the transit stop
 - The identifier of the link on which the transit stop lies
 - The identifier of the towards the vehicle travels
 - The identifier of the transit zone in which the stop is located
- Transit driver plan
 - List of nodes in order of route
- Transit schedule and transit zone tables
 - Departure and arrival time tables
 - Costs of travel by zone, if specified
Data Availability

- Network tables are extensive and their preparation requires a large effort
- The basic nodes and links can often be imported from existing MPO models
 - Node and link conversion may require scripting for
 - Conversion between coordinate systems
 - Cross-referencing between different data sets
 - GIS processing to join or partition regional data sets
- Some information typically cannot be found at MPOs
 - Activity locations, parking locations
 - Network details such lane connectivity and traffic signals
- MPOs do typically have reasonable data for
 - Transit, road enhancement projects
 - Network enhancement plans and projections into future years
Example: Chicago Metropolitan Area

- The Chicago Metropolitan Agency for Planning maintains a road and transit networks in a database for regional planning
 - Can be used to project the network features into the future based on planned highway and transit projects
 - Can be extracted in many different formats, including tabular formats suitable for TRANSIMS processing

- Road Network Tables
 - Nodes
 - Links
 - Zones

- Result shown on the right has been derived with the ArcNet tool from the functional CMA TRANSIMS model
Recap of a Typical Network Conversion Procedure

- TRANSIMS provides three tools for road network conversion
 - TransimsNet
 - IntControl
- The input data is expected in 4 (1 optional) input files for
 - Nodes (northing and easting in the appropriate zone)
 - Conversion can re-project between typical state plane and UTM coordinate systems as well as plain long/lat coordinates
 - Links
 - Generic connections between the nodes specifying speed limits, number of lanes, use restrictions, street names, and similar
 - Zones
 - Traffic analysis zone centroids for supplying zoning information to generic activity locations being generated
 - Shape Points
 - If available, the shape of links can be provided in form of shape points as well (also used for approach angles and similar)
Recap of a Typical Network Conversion Procedure

- The conversion is performed in two steps (TransimsNet and IntControl)
- TransimsNet performs most of the work, which consists of
 - Reformatting of node and link data into appropriate TRANSIMS network tables
 - Automatic generation of pocket lanes and connectivity records based on the functional classes of intersecting roads
 - Automatic creation of the locations of traffic signals and traffic signs according to functional classes of intersecting roads (creating warrants)
 - Creation of parking locations and activity locations based on functional classes and geometric constraints using zoning information
 - Creation of objects such as process links between parking and activity locations
 - Removal of extraneous nodes (turning them into shape points)
Typical Network Conversion Procedure

- After TransimsNet has created the warrants for signals and signs, the user has a chance to edit the resulting files to add more details, such as the types of signals, adding and deleting signal positions, and more.
- IntControl is used to create details phasing and timing information for all signal warrants and generates the detailed TRANSIMS files for both signs and signals.
- The resulting network is suitable for direct use in TRNSIMS, both in the router and microsimulator.
- ArcNet can be used to turn the TRANSIMS network tables into a format suitable for use in ArcGIS and other GIS applications such as uDig.
- TransitNet performs a similar conversion for transit networks.
Credits and Acknowledgements

- GIS visualization materials were mostly developed at Argonne based on the TRANSIMS tools developed by AECOM for USDOT
- Chicago road and transit network data used in some of the examples was provided by the Chicago Metropolitan Agency for Planning
- USDOT provided the funding for the development of these training materials
- USDOT provided the funding for the TRACC computing center and the resources necessary to perform these training session
- Some figures have been developed for USDOT by Prof. Antoine Hobeika, Virginia Polytechnic Institute, Civil and Environmental Engineering
- The presentation is loosely based on materials provided by USDOT at a training course in November 2006