Integrating Dynamic Traffic Assignment and Activity-Based Demand Models for Large Scale Network Applications

Hani S. Mahmassani
Kuilin Zhang

Integrated Travel Models Workshop, ITM 2012
Principal Contributing Researchers

Lan Jiang PhD Candidate, Northwestern
Jiwon Kim PhD Candidate, Northwestern
Omer Verbas PhD Candidate, Northwestern
Tian Hou PhD Candidate, Northwestern
Kuilin Zhang Post-Doc Appointee – Argonne National Laboratory

In collaboration with

Dr. Peter Vovsha, PB Americas

On projects funded by Strategic Research Highway Program SHRP 2 and FHWA, US DOT
OUTLINE

1. Motivation and Key Issues
2. Reliability, Pricing and User Heterogeneity in Dynamic Equilibrium Framework
 - Challenges
 - Formulation and Algorithms
 - Large-Scale Issues
3. Application to New York Regional Network
4. Concluding Remarks
• Why do we need integrated dynamic network models?
• Why capture behavior?
• Responses to congestion, interventions (pricing, information, management actions…) three key objectives:
 MOBILITY, RELIABILITY, SUSTAINABILITY
• Support strategic and operational planning decisions by agencies
• Next generation of interventions: information-based, personalized, dynamic, predictive, multimodal
DELIVERING THE METHODS: SIX KEY CHALLENGES

- ADVANCED BEHAVIOR MODELS
- HETEROGENEOUS USERS
- INTEGRATION WITH NETWORK MODELS: THE PLATFORM—SIMULATION-BASED MICRO-ASSIGNMENT DTA
- GENERATE THE ATTRIBUTES: RELIABILITY IN NETWORK LEVEL OF SERVICE
- CONSISTENCY BETWEEN BEHAVIOR (DEMAND) AND PHYSICS (SUPPLY): EQUILIBRATION
- PRACTICAL LARGE NETWORK APPLICATION: INTELLIGENT IMPLEMENTATION
User Behavior and Heterogeneity
Choice Frameworks

Upper-level models of activity generation

Tour primary destination & intermediate stops

Main mode: auto, transit, non-motorized

Detailed mode & occupancy

Tour TOD combination of departure and arrival times

Trip departure time within 2-3 hour window

Auto route type: toll vs. free

Source: Peter Vovsha (2010); SHRP2-C04
Travel Time Reliability

• Travel time reliability is manifested in that a trip maker may be willing to pay a premium (toll) to achieve greater reliability in travel time.
Individual’s Path Choice Decision
User Heterogeneity

• Recognize user heterogeneity in the path choice model
 ➢ Conventional traffic assignment models consider a **homogeneous perception** of tolls by assuming a **constant VOT** in the path choice model.
 ➢ Empirical studies (e.g. Hensher, 2001; Brownstone and Small 2005; Cirillo et al. 2006) found that **the VOT varies significantly across individuals.**
User Heterogeneity

• Present in valuation of key attributes, and risk attitudes
 – Value of schedule delay (early vs. late, relative to preferred arrival time), critical in departure time choice decisions.
 – Value of reliability.
 – Risk attitudes.

Causes significant challenge in integrating behavioral models in network simulation/assignment platforms
Integration Issues
DEMAND

SUPPLY

INTEGRATE

?

INTERFACE
DEMAND

SUPPLY

INTEGRATE

JUXTAPOSE
DEMAND

SUPPLY

INTEGRATE?
THE KEY IS THE PLATFORM: SIMULATION-BASED DTA

DIS INTEGRATING DEMAND AND SUPPLY

CRITICAL LINK 1: LOADING INDIVIDUAL ACTIVITY CHAINS

CRITICAL LINK 2: MODELING AND ASSIGNING HETEROGENEOUS USERS

CRITICAL LINK 3: Multi-scale modeling: consistency between temporal scales for different processes
• Simulation-based DTA, e.g. DYNASMART-P: A dynamic network modeling capability, to represent demand and supply dynamics, along with operational measures

• Overcomes limitations of conventional planning tools, and provides combined network assignment and traffic simulation capability for large networks, with micro-level representation of agent decisions

• Meso simulation enables application to practical large networks
1. Ignore: route choice main dimension captured; replace travel time by travel cost in shortest path code, assuming constant VOT.

2. When multiple response classes recognized, discrete classes with specific coefficient values are used; number of classes can increase rapidly; not too common in practice.

2. Recent developments with simulation-based DTA:

 Heterogeneous users with continuous coefficient values; made possible by Breakthrough in parametric approach to bi-criterion shortest path calculation.

 Include departure time and mode, in addition to route choice, in user responses, in stochastic equilibrium framework

 Efficient implementation structures for large networks: Application of integrated model to New York Regional Network.
• Multi-criterion Stochastic Dynamic User Equilibrium (MSDUE) model, which integrates:
 ➢ Traffic Flow Dynamics;
 ➢ Heterogeneous Users
 ➢ Three essential decision attributes: travel time, out-of-pocket cost, and travel time reliability in path choice framework
 ➢ Higher-level mode choice and activity timing dimensions

• Applicable to transportation networks of practical size.
Model Challenges

• **Reliability Measure in path choice framework** → increase complexity of the path finding/calculation procedure

• **Heterogeneous Users** in terms of continuously distributed VOT and/or VOR → create an infinite-dimensional problem

• **Large-Scale Network Applications** → impose computational burdens on the solution algorithm
Divide and Conquer I: Generate Reliability Measures

• Foundation: a robust relation between s.d. and mean values of the TT per unit distance at path level.

• In this study:

\[TTSD_{\tau,m} = a + b \times \frac{TT_{\tau,m}}{TD_{\tau,m}} \]

➢ Future improvements: actual observations of vehicle trajectories

• Generally, any relation relying on path-level attributes, could be incorporated in the procedure followed.

based on Herman, Mahmassani and co-workers’ research
Travel Time Reliability

• Model: standard deviation vs. mean

\[(t) = a + b \times E(t)\]

where

- \(t\) = travel time per unit distance
- \(\sigma(t)\) = standard deviation of \(t\)
- \(E(t)\) = mean value of \(t\)
- \(a, b\) = coefficients

• Model calibration
 - GPS probe data
 - Vehicle trajectory data output from simulation

based on Herman, Mahmassani and co-workers’ research in ‘80’s

Hou, Mahmassani and Dong (2012)
GPS probe data analysis

- GPS data from Traffic Choice Study at Puget Sound area (Seattle)
- Data from July 2005 to March 2007 (~18 months)
- 275 households, 415 vehicles involved
- Network size:
 - ~3000 OD pairs
 - ~1700 paths
 - ~6000 links
GPS probe data analysis

OD level

Path level

Link level

$y = 1.0665x - 1.6728$
$R^2 = 0.577$

$y = 0.7323x - 1.1286$
$R^2 = 0.3861$

$y = 0.9936x - 0.4736$
$R^2 = 0.6675$
Robust Relation

- Models are calibrated for different sizes of networks at different aggregation levels
- Three model forms are tested
 - Linear model
 - Square root model
 - Quadratic model
- Linear model gives best results
- Model parameters are estimated by Weighted Least Square (WLS) to accommodate heteroscedasticity

<table>
<thead>
<tr>
<th>Network</th>
<th>Irvine</th>
<th>CHART</th>
<th>New York City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Zones</td>
<td>61</td>
<td>111</td>
<td>3697</td>
</tr>
<tr>
<td>Number of Nodes</td>
<td>326</td>
<td>2182</td>
<td>28406</td>
</tr>
<tr>
<td>Number of Links</td>
<td>626</td>
<td>3387</td>
<td>68490</td>
</tr>
<tr>
<td>Number of Vehicles</td>
<td>58385</td>
<td>151973</td>
<td>6766805</td>
</tr>
<tr>
<td>Demand Duration (hr)</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
Network-Level SD vs. Mean of Trip Time per Mile

(a) Irvine

(b) Baltimore-Washington

(c) New York
Path-Level SD vs. Mean of Trip Time per Mile

Irvine

Baltimore-Washington

New York
Model Challenges

• **Reliability Measure in path choice framework** → increase complexity of the path finding/calculation procedure

• **Heterogeneous Users** in terms of continuously distributed VOT and/or VOR → create an infinite-dimensional problem

• **Large-Scale Network Applications** → impose computational burdens on the solution algorithm
Divide and Conquer II: Solve for Random Coefficients (VOR and VOT)

Parametric Analysis Method (PAM)\(^1\)

- Solves multi-objective shortest path problems with random variables.
- Outputs: Segments of random variables on the run instead of given a priori and time-dependent shortest path trees.

\(^1\)Mahmassani et al. (2006); Lu, & Mahmassani, (2008).
Parametric Analysis Method (PAM)

Input: from traffic simulator
- Time-dependent travel time (TT)
- Time-dependent travel cost (TC)

Output: for each dest. \(j \)
- A path tree
- VOT Breakpoints

\[c_{odp}^{\tau} (\alpha) = TC_{odp}^{\tau} + \alpha \times TT_{odp}^{\tau} \]

- Initialize \(\alpha = \alpha_{\text{min}} \)
- Update link generalized Costs with \(\alpha \)
- Find time-dependent Least Cost (TT & TC) path tree \(T(\alpha) \)
- Obtain \(\alpha_{\text{ub}} \) by the parametric analysis
- Set new \(\alpha = \alpha_{\text{ub}} + \Delta \)

Stop

No \(\alpha < \alpha_{\text{max}} \)

Yes
Parametric Analysis Method (PAM)

Input: from traffic simulator
- Time-dependent travel time (TT)
- Time-dependent travel cost (TC)

Output: for each dest. j
- A path tree
- VOT Breakpoints

\[
c_{odp}^\tau (\alpha, \beta) = TC_{odp}^\tau + \alpha \times TT_{odp}^\tau + \beta \times TV_{odp}^\tau
\]

1. **Initialize** \(\alpha = \alpha_{\text{min}} \)
2. **Find time-dependent Least Cost (TT & TC)** path tree \(T(\alpha) \)
3. **Obtain** \(\alpha_{\text{ub}} \) by the parametric analysis
4. **Set new** \(\alpha = \alpha_{\text{ub}} + \Delta \)
5. **Update link generalized Costs with** \(\alpha \)
6. **Find** time-dependent Least Cost (TT & TC) path tree \(T(\alpha) \)
7. **Stop if** \(\alpha < \alpha_{\text{max}} \)

Flowchart:
- **Input** from traffic simulator
- **Output** for each dest. j
-
 \[
c_{odp}^\tau (\alpha, \beta) = TC_{odp}^\tau + \alpha \times TT_{odp}^\tau + \beta \times TV_{odp}^\tau
\]
- Read VOT break points and path set for every \((i,j,t)\)
- Compute \(TV_{odp}^\tau \) for each path in the path set
- Start with the first VOT
- Find time-Dependent Least Generalized Cost Path
- And move to next interval
- Last int.? **Yes**
- Stop
- **No**

Key Equations

\[
c_{odp}^\tau (\alpha, \beta) = TC_{odp}^\tau + \alpha \times TT_{odp}^\tau + \beta \times TV_{odp}^\tau
\]
Output: for each dest. \(j \)
- A path tree
- VOT Breakpoints

Read VOT break points and path set for every \((i,j,t)\)

Compute \(TV_{odp} \) for each path in the path set

Start with the first VOT

Find time-Dependent Least Generalized Cost Path
And move to next interval

No

[Flowchart]

Yes

[Tree Index]

\[
c_{odp}^\tau (\alpha, \beta) = TC_{odp}^\tau + \alpha \times TT_{odp}^\tau + \beta \times TV_{odp}^\tau
\]
Parametric Analysis Method (PAM)

Output: for each dest. \(j \)
- A path tree
- VOT Breakpoints

Read VOT break points and path set for every \((i,j,t)\)

Compute \(TV_{odp} \) for each path in the path set

Start with the first VOT

Find time-Dependent Least Generalized Cost Path
And move to next interval

\[
c_{odp}^\tau (\alpha, \beta) = TC_{odp}^\tau + \alpha \times TT_{odp}^\tau + \beta \times TV_{odp}^\tau
\]
Parametric Analysis Method (PAM)

\[c_{odp}^\tau (\alpha, \beta) = TC_{odp}^\tau + \alpha \times TT_{odp}^\tau + \beta \times TV_{odp}^\tau \]

Output: for each dest. j
- A path tree
- VOT Breakpoints

Read VOT break points and path set for every (i,j,t)
Compute \(TV_{odp}^\tau \) for each path in the path set
Start with the first VOT
Find time-Dependent Least Generalized Cost Path
And move to next interval

\[\alpha_{min} \quad \alpha_{max} \]

\[\text{Tree Index} \]

\[\text{Int.} \quad \text{Int.} \quad \text{Int.} \quad \text{Int.} \quad \text{Int.} \quad \text{Int.} \]

\[(1) \quad (2) \quad (3) \quad (4) \quad (5) \quad (6) \]
Column Generation-based Algorithm

A particle-based traffic simulator

Jiang, Mahmassani and Zhang (2011): Multi-Criterion DUE model
Algorithm: Outer Loop

\[TTSD_{odp}^{\tau,m} = a + b \times \frac{TT_{odp}^{\tau,m}}{TD_{odp}^{\tau,m}} \]

\[GC_{odp}^{\tau,m}(\alpha, \beta) = TC_{odp}^{\tau,m} + \alpha \times TT_{odp}^{\tau,m} + \beta \times TTSD_{odp}^{\tau,m} \]
Algorithm: Inner Loop

Outputs from Outer Loop:

Update Path Assignment: LOV

Update Path Assignment: HOV

\[TTSD_{odp}^{\tau,m} = a + b \times \frac{TT_{odp}^{\tau,m}}{TD_{odp}^{\tau,m}} \]

\[GC_{odp}^{\tau,m}(\alpha, \beta) = TC_{odp}^{\tau,m} + \alpha \times TT_{odp}^{\tau,m} + \beta \times TTSD_{odp}^{\tau,m} \]
Model Challenges

• **Reliability Measure in path choice framework** ➞ increase complexity of the path finding/calculation procedure

• **Heterogeneous Users** in terms of continuously distributed VOT and/or VOR ➞ create an infinite-dimensional problem

• **Large-Scale Network Applications** ➞ impose computational burdens on the solution algorithm
Bottlenecks of the Algorithm

Initialization: Outer Loop

PAM: LOV
PAM: HOV

Generate Reliability Measure

MDNL

Convergence Check?

YES → STOP

NO → Outer Loop: Path Generation

In Inner Loop: RMUDE

Update Path Assignment: LOV
Update Path Assignment: HOV

MDNL

Convergence Check?

YES → MDNL

NO → Initialization: Inner Loop

Implementation Techniques
Divide and Conquer III: Implementation Techniques for Large Network Applications

- **Gap-based Technique**: only activate PAM for a subset of destination nodes where the gaps are worse.

- **Adjust Step Size in PAM**: reduce the upper bound of number of segments found by PAM for each destination node.
OUTLINE

1. Motivation and Key Issues
2. Reliability, Pricing and User Heterogeneity in Dynamic Equilibrium Framework
 - Challenges
 - Formulation and Algorithms
 - Large-Scale Issues
3. Application to NY Regional Network
4. Concluding Remarks
Application of Integrated Procedures to New York Regional Network

Apply demand and user response models developed in SHRP-2 Project C04 (w. P. Vovsha, PB Inc.) for NY Metro network:

- route choice model includes time-varying prices, and travel reliability measure
- random value of time (distributed across users)
- mode choice and departure time choice models

in conjunction with

MDUE (multi-criteria Dynamic User Equilibrium) with heterogeneous users and very large scale network

~30,000 Nodes
70,000 Links
3,700 Zones

5-hour AM peak period
5.2 M simulated vehicles
New York Network Application

How Big?

- TAZ: 3,697
- Node: 28,406
- Link: 68,490
- 5 hr (6-11am) demand
 - LOV: ~ 4.2 million
 - HOV: ~ 0.9 million
Convergence Patterns

AGap reduction at final iteration:

- E1: 72.36%; E2: 73.69%, and E3: 72.10%
Computational Time: PAM

E1: ~7min for each destination;
E2: 53% reduction of total time in E1;
E3: 64% reduction of total time in E1.
Flow Prediction: Toll Road Usage

Max flow difference: ~ 0.31%
Assumptions:
- Given network with discretized planning horizon
- Given time-dependent OD person demand
- Given calibrated mode choice model (LOV, HOV, and Transit)
- Given VOT distribution
- Given road pricing scheme

Solve for:
- Modal share for each mode (e.g., LOV, HOV, and Transit)
- Assignment of time-varying travelers for each mode (LOV, HOV) to a congested time-varying multimodal network under multi-criteria dynamic user equilibrium (MDUE) conditions

Methodology:
- Descent direction method for solving the modal choice problem
- Simulation-based column generation solution framework for the MDUE problem
Modal choice loop

Time-Varying Person OD Demand or trip chains

Initial Network Performance (Time, Toll, and Reliability etc.)

Modal Choice Model (LOV, HOV, and Transit)

Network (LOV and HOV)

Road pricing scheme

Time-Varying Vehicle Demand (LOV and HOV)

Time-Varying Transit Demand

Multi-Criteria Dynamic User Equilibrium Model (LOV and HOV)

Time-Varying Network (LOV and HOV) Performance (Time, Toll, Reliability etc.)

Time-Varying Network (LOV and HOV) Flow Pattern

Zhang, Mahmassani, and Vovsha (2011): Integrated Nest-Logit Mode Choice model
Nested Logit Mode Choice Model
Outer Loop Convergence Pattern: New York Regional Network
CONCLUDING COMMENTS

• We have seen advances in state-of-the-art in integrating user responses to dynamic pricing, congestion and unreliability in network modeling procedures.

• New methodologies are software independent and can be applied with any simulation-based DTA tool (caveats...)

• Application to very large New York regional network first successful application to network of this size of equilibrium DTA with heterogeneous users.

• Integration process could be improved with additional choice dimensions, and eventually fully-configured activity-based model.
KEY ISSUES and OPPORTUNITIES

• Theoretical constructs:
 – Notions of consistency in stochastic dynamic context
 ➔ convergence measures?
 – Path dependence in dynamic simulation forecasts
 – Consistency of attribute valuation throughout activity submodels—e.g. should travel time be valued similarly in route vs mode vs departure time choices?

• Methodological issues: multi-scale modeling, path finding, activity scheduling combinatorics, cooperation and competition in multi-agent system

• Application issues: Planning and Operations Decision Support System
 – Different applications/problems call for different capabilities: plug-and-play built on basic platform

• Major opportunity: more active tie in with trajectory data from probes and sensor information—responsive, calibrated, relevant platform for decision support