Trails and Tribulations of High Performance Computing

Mr. David B. Roden, Senior Consulting Manager

AECOM

April 29, 2012
Transportation Modeling

- Transportation modelers are charged with preparing credible forecasts of:
 - The impacts and benefits of proposed highway, transit, pedestrian, and bicycle improvements
 - Mobile source emissions for conformity analysis and for quantifying greenhouse gases (GHG), energy consumption, and particulates
 - The impacts of policy decisions and pricing or operational strategies designed to influence or manage travel demand, system performance, land-use development, special events, and economic or financial viability
Advanced Practice Modeling

Population Synthesizer
- Households
- Persons
- Vehicles

Non-Household Travel
- External Trips
- Non-resident Tours
- Commercial Vehicles
- Special Generators

Activity Generator
- Activity Pattern
- Activity Location
- Time Schedule
- Travel Mode

Travel Simulator
- Route Planner
- Microsimulator
- User-Equilibrium

Traveler Response
- Time Schedule
- Activity Location
- Travel Mode
- Activity Pattern

System Response
- Adaptive Controls
- Transit Schedules
- Dynamic Pricing
- Traveler Information

AECOM
Analysis Requirements

- Finer resolution of space and time dimensions
 - Network-based locations; 15 minutes or less
- Traveler decisions based on household activities
 - Coordinated person travel for one or more days
- The operations of specific streets and facilities
 - Time dependent networks with dynamic operations
- Regional simulation of individual vehicles and persons to evaluate system performance
 - Detailed forecasts of speeds, queues, flows, riders, etc.
 - By time of day, vehicle/user type, lane, train, etc.
The Computational Challenge

- The generally “acceptable” computer processing time for traditional TDF models is ~24 hours
 - Large regions must trade-off model detail and complexity against computer hardware/software costs and complexity OR do most regional modeling in-house or through a service center
- Advanced practice models are significantly more complex and computationally demanding
 - High performance computing is required for “feasible” processing times
 - Most MPOs won’t accept run times over 48-60 hours
Case Studies

• Computational solutions and challenges for large traditional TDF models
 ▪ MWCOG / WMATA

• Advanced demand models integrated with traditional network models
 ▪ DRCOG / RTD

• Advanced demand models integrated with regional simulation models
 ▪ SHRP2-C10 Jacksonville
MWCOG / WMATA – DC/VA/MD

- MWCOG version 2.3 model
 - Traditional TDF model using Cube software
 - Expanded zone structure to 3,722
 - 25 million person trips, 1.6 million transit trips
 - New mode choice models use 22 transit paths
 - Assigns 4 periods, 6 user classes, to 10^{-4} or better
 - 5 global speed feedback loops

- WMATA post processing model
 - Models each trip purpose by time of day
 - Park-&-ride capacity constraints
Model Run Times

- Tested several options to gage run times
 - Congestion level (year), assignment algorithm, and distributed processing through Cube Cluster
 - Most regional agencies limited to 4 core computers

<table>
<thead>
<tr>
<th>Year</th>
<th>Algorithm</th>
<th>Cores</th>
<th>Hours</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Frank-Wolfe</td>
<td>1</td>
<td>95</td>
<td>4.0</td>
</tr>
<tr>
<td>2040</td>
<td>Frank-Wolfe</td>
<td>1</td>
<td>109</td>
<td>4.6</td>
</tr>
<tr>
<td>2007</td>
<td>Conjugate FW</td>
<td>1</td>
<td>77</td>
<td>3.2</td>
</tr>
<tr>
<td>2007</td>
<td>Bi-conjugate FW</td>
<td>1</td>
<td>75</td>
<td>3.1</td>
</tr>
<tr>
<td>2007</td>
<td>Conjugate FW</td>
<td>4</td>
<td>37</td>
<td>1.5</td>
</tr>
<tr>
<td>2007</td>
<td>Bi-conjugate FW</td>
<td>4</td>
<td>33</td>
<td>1.4</td>
</tr>
<tr>
<td>2040</td>
<td>Bi-conjugate FW</td>
<td>4</td>
<td>48</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Effect of Cube Cluster on Results

- Parallel assignments generated small VMT differences; some significant volume differences; and illogical convergence results
 - “Standardize” to 4 core computing as a result

<table>
<thead>
<tr>
<th>Year</th>
<th>Algorithm</th>
<th>Cores</th>
<th>VMT</th>
<th>% Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Conjugate FW</td>
<td>1</td>
<td>156,698,908</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>Conjugate FW</td>
<td>4</td>
<td>156,653,683</td>
<td>-0.03%</td>
</tr>
<tr>
<td>2007</td>
<td>Bi-conjugate FW</td>
<td>1</td>
<td>156,697,741</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>Bi-conjugate FW</td>
<td>4</td>
<td>156,674,456</td>
<td>-0.01%</td>
</tr>
</tbody>
</table>
Daily Volume Different by > 20%
Assignment Convergence Problem

Relative Gap: Ver. 2.3.34 travel model
BC Frank-Wolfe, 2040_final, 10^-6 relgap, speed feedback iteration 1
Network: Based on 2010 CLRP; Tolls: Not optimized

User equilibrium iteration
- AM nonHOV3+
- AM nonHOV3+
Performance Improvement Task

- Highway Skims (Composite)
- Transit Skims (Best Path)
- Trip Generation
- Trip Distribution
- Mode Choice
- Time of Day
- Assignment

Feedback

Identified for parallelization

4/29/2012 Integrated Transportation Modeling
Time Savings from Parallelization

- Highway and Transit Skims
 - Process time periods together
- Trip Distribution
 - Process trip purposes together
- Mode Choice
 - Process trip purposes together
- Highway/Transit Assignment
 - Process time periods together
 - Combine non-HOV and HOV
- ~40% savings for all steps
Relaxing the 4 Core Standard

- Parallelizing the WMATA post-processor
 - Using a 64 core server
- Implemented outside of Cube Cluster

<table>
<thead>
<tr>
<th>Process</th>
<th>Steps</th>
<th>Sequential</th>
<th>Parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Links</td>
<td>4 steps</td>
<td>35 minutes</td>
<td>2 minutes</td>
</tr>
<tr>
<td>Path Building</td>
<td>22 paths</td>
<td>66 minutes</td>
<td>3 minutes</td>
</tr>
<tr>
<td>Transit Fares</td>
<td>22 updates</td>
<td>60 minutes</td>
<td>3 minutes</td>
</tr>
<tr>
<td>Mode Choice</td>
<td>6 models</td>
<td>60 minutes</td>
<td>10 minutes</td>
</tr>
<tr>
<td>Assignment</td>
<td>22 tables</td>
<td>66 minutes</td>
<td>3 minutes</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>227 minutes</td>
<td>21 minutes</td>
</tr>
</tbody>
</table>
Lessons and Findings

- Significant computational saving can be achieved by simple parallel processing
 - The basic concept and processing mechanism is not well understood by traditional TDF modelers
 - Highway assignment is still the major bottleneck
- Changing the computing configuration should not change the model results
 - Single CPU, multi-threaded or computer cluster
DRCOG / RTD – Denver

- DRCOG developed tour-based FOCUS model
 - TransCAD 5.0, C# and SQL Server
 - Windows Enterprise Server, 32 CPUs, 64GB memory
 - 2,832 zones and activity points
 - 8 modes, 6 tour purposes – DaySim family (CS)
 - 10 highway time periods, 4 transit time periods
 - 3 feedback loops → 60 hour runs
 - Includes simplifying compromises to reduce run times

- RTD still uses older trip-based COMPASS model for FTA New Starts work
Basic Modeling Steps

<table>
<thead>
<tr>
<th>Model Component</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population Synthesizer</td>
<td>Households and Person Tables</td>
</tr>
<tr>
<td>Database Stored Procedures</td>
<td>Database Filled with Imported Zones, Prices, Derived Variables, Linkage Tables</td>
</tr>
<tr>
<td>PopSyn Output Processor</td>
<td>Household Person Cards</td>
</tr>
<tr>
<td>TransCAD General Pre-process</td>
<td>TransCAD Network Created</td>
</tr>
<tr>
<td>TransCAD Network Skims</td>
<td>nuts Matrices</td>
</tr>
<tr>
<td>TransCAD Multi-Period/Highway/Transit Price Process</td>
<td>Multiple Networks Generated: Preprocessed prices matrix</td>
</tr>
<tr>
<td>TransCAD DIA</td>
<td>BIA, Congestion, KDE, Highway and Transit Trip Matrix by time of day</td>
</tr>
<tr>
<td>Regular Workplace Location Choice</td>
<td>Persons Table Updated: Workers Given Regular Work Location Zone and Point</td>
</tr>
<tr>
<td>Regular School Location Choice</td>
<td>Persons Table Updated: Students Given Regular School Location Zone and Point</td>
</tr>
<tr>
<td>Auto Availability Choice</td>
<td>Households Table Updated: Households Given Number of Auto Availability, 0, 1, 2, 3, 4+</td>
</tr>
<tr>
<td>Aggregate Destination Choice Logsum Generation</td>
<td>Households Table Updated: Households Given Aggregate Mode Destination Choice Logsums</td>
</tr>
<tr>
<td>Daily Activity Pattern Choice</td>
<td>Persons Table Updated: Persons Given Daily Activity Pattern</td>
</tr>
<tr>
<td>Exact Number of Tours Choice</td>
<td>Out Number of Tours Created: Tours Table Created with Tours by Purpose and/or Persons</td>
</tr>
</tbody>
</table>

1	Work Tour Destination Type Choice
16	Work-Based Subtour Generation Choice
17	Tour Time of Day Simulation
18	Tour Primary Destination Choice
19	Trip Time of Day Simulation
20	Tour Mode Choice
21	Intermediate Stop Location Choice
22	Trip Mode Choice
23	Trip Time Choice
24	Write Trips to TransCAD
25	Assignment, Convergence, Test, Summary and Speed Balancing

4/29/2012 Integrated Transportation Modeling
Zone Points
Model Migration Plans and Issues

- Seeking FTA acceptance for New Starts work
 - How / where to freeze the “trip tables” for SUMMIT
 - Tour Mode Choice appears to be the best option
 - Improve model consistency throughout the process
 - Remove simplifying compromises in transit models
- Hardware/software distribution issues
 - Expensive purchase – ~$35,000 hardware/software
 - Hard to install and operate – locked server room
- Address run time bottlenecks
 - Current process is only using about 10% of CPUs
Optimize Database Interface

- Standard database software is not well suited to transportation applications
 - Designed for fast queries and interactive editing
 - Updating all data records by sequential or multi-threaded writes is expensive
 - Record locks and index/relationship maintenance is time consuming
 - Faster to re-create the database using a bulk load and relaxed relationship checks
 - Create a “trusted” partnership between the transportation models and the database software
 - Update indices and relationships “offline”
Park-&-Ride Partially Implemented

- **Only Tour Mode Choice**
 - No intermediate stops or trip mode choice → P-A loading
 - Impedance based on 2*outbound path
- **Not modeled like other modes**
 - TransCAD path building limitations
- **Suggested Improvements**
 - Build return trip skims through the outbound parking lot
 - Park-n-ride (O-P-D) + walk-transit (D-P) + drive (P-O)
 - Use the walk-transit and drive skims from the return trip time period
 - For example: AM outbound → PM return
 - Assign in O-D format like other modes
TransCAD Performance Issues

• Reading O→D and D→O matrix cells from 100+ tables is prohibitive
 ▪ Transpose D→O and attach to O→D rows
 • AM depart – AM, MD, PM, EL return

• Implementation options
 ▪ GISDK with cell reads/writes → 30 hours
 ▪ GISDK with vector reads/writes → 3+ hours
 ▪ Custom software using CaliperMTX.dll → 8 minutes
 • Read tables into memory, merge, and write

• Streamline other model components
Lessons and Findings

- Databases are nice for analyzing results, but need to be optimized for in-line modeling
 - Store data in memory or flat files and do bulk loads to the database at the end of the process or off-line
- “Standard” GISDK interfaces are not always the most efficient approach to TransCAD models
 - Manipulate files for processing efficiency
 - If you have memory, use it
SHRP2-C10 – Jacksonville

- **DaySim tour-based demand model**
 - Parcel-based, 30 minutes activity schedules
 - 22 time periods (30 mins. in peaks) by 1335 zone skims
 - Outputs person activities assigned to one minute schedules and TRANSIMS activity locations

- **TRANSIMS regional simulations**
 - Dynamic user-equilibrium simulation
 - One second time steps for 27 hour day
 - Trip gap and link gap convergence criteria
 - Generates zone-to-zone skims using 5 minute increments of link and turning movement delays
Processing Time

- **TRANSIMS (v4.0) Router – Microsimulator**
 - Typically run on the TRACC Linux cluster using parallel processing of single thread executables
 - 16 or more plan partitions for Router and Plan processing
 - Single CPU for PlanSum and Microsimulator
 - Each iteration takes ~3.5 hours
 - Network stabilizes in about 20 iterations – ~3 days
 - RSG gap criteria requires ~60 iterations – ~9 days
 - RSG does 4 global iterations – ~36 days
- Upgrade to TRANSIMS (v5.0) for MPI and multi-threaded software performance
TRACC Computer Cluster
Integrated Computations

- File input/output and data manipulation is a huge component of run times
 - If the computer has sufficient memory and CPUs, keep data and iterations in memory
- Simulator processing and convergence
 - Time sorted, geographic partitions
 - Vary level of computational resolution by iteration
 - Time-based flows-speeds to macro, meso, micro-simulation
- Integrate Router and Simulator
 - Build paths that start at each time increment
Software Performance Lessons

- **Isolate independent calculations**
 - Processing threads or partitioned applications

- **Preserve input/output order**
 - Processing threads write to an ordered queue that an output thread uses to write to the output file

- **Avoid file or data locks and input/output**
 - Write to shared memory if data records are fixed and the thread has unique record ownership
 - Use private thread-based memory to hold data until a data exchange is required
Modeling Principals

- Changing the computing configuration should not change the model results
 - Single CPU, multi-threaded or computer cluster
- Changing the data partitioning or re-running the model should not change the model results
 - Random impacts should be consistent and reproducible
- Balance run times with computer requirements
 - Advanced models require high performance computing \(\rightarrow\) application and staffing challenges