An Application of TRANSIMS to the Analysis of Multimodal Corridors in the Greater Phoenix Metropolitan Area

FHWA Contract DTFH61-08-C-00018
Project Manager: Brian Gardner, FHWA

S. Ellie Ziems, Bhargava Sana, Ram Pendyala
School of Sustainable Engineering and the Built Environment

TRANSIMS: Applications and Development Workshop
April 8-9, 2010; Chicago, IL
Outline

• Background
• Project Objectives
• Project Approach
 – Highway Network
 – Transit Network
 – Light Rail Subarea
 – Travel Demand Input
 – Simulation
 – Ongoing Work
• TRANSIMS Documentation
• Upcoming Activities
Welcome to the Greater Phoenix Area
About the Phoenix Metropolitan Area

- Population of 4.28 million
 - 12th most populated metropolitan area in the country
- The City of Phoenix is the 5th largest in the U.S.
- Phoenix is the most populated capital city in the U.S.
- 8 cities in the area have 100,000+ people
 - Phoenix
 - Mesa
 - Tempe
 - Gilbert
 - Chandler
 - Peoria
 - Scottsdale
 - Glendale
Line Rail Transit

- Light Rail service began in December 2008
- Starter line ~20 miles long
- Serves West Mesa, North Tempe, and Central Phoenix
- Additional lines being planned for the future
- Important service stops
 - Arizona State University
 - Mill Avenue Shopping district
 - Sky Harbor Airport
 - Professional Sports Facilities
 - Phoenix CBD
Plan for Future Light Rail Corridors

Legend:
- **Initial 20-mile Light Rail Alignment (Scheduled to open Dec. 2008)**
- **Northwest Extension – Phase 1 (Scheduled to open 2012)**
- **Future High Capacity / Light Rail Corridors for Further Study**

Note: Dates indicate calendar year openings.
Metropolitan Planning and Modeling Challenges

• Urban sprawl
 – Residential areas sprouting along the edges

• Heavy congestion during peak hours
 – Serious environmental and quality of life implications

• Rating Corridor Performance

• Incorporating multiple modes of transportation
 – Interaction between highway and transit networks
 – Modeling the addition/presence of a new mode

• Simulation run times in large metropolitan areas are prohibitive
Specific Challenges to the Phoenix Area

- Large regional scale
 - High run times and computational effort required
 - Provision of regional transit services
- High population of seasonal residents
- Mountain preserves and parks interspersed
- Shared borders with Native American Reservations
Project Objectives

• To implement TRANSIMS for a large scale region with a multi-modal network
• To apply TRANSIMS for operational analysis of a multi-modal corridor
• To develop documentation to aid the TRANSIMS user community
• This project aims to apply TRANSIMS as a tool to overcome two challenges:
 – Microsimulation on a large scale network
 – Microsimulation in a multi-modal environment
Project Phases

• Phase I: Network and Input Database Creation
 – Build a highway network
 – Build a transit network
 – Demand from Maricopa Association of Governments 4-step model

• Phase II: Calibration and Validation of Router/Microsimulator
 – Run Router/Microsimulator to convergence
 – Validate simulated traffic
 – Validate simulated transit ridership

• Phase III: Simulating Demand and Network Dynamics
 – Use validated network from phases I and II
 – Apply PopGen synthetic population generator
 – Apply TRANSIMS activity generator/scheduler
Summary of Completed Project Tasks

- Highway Network
- Transit Network
- Subarea selection and creation
- Origin-Destination matrices applied
- Creation of time-of-day distributions by purpose
- Simulation process completed
 - Router Stabilization
 - Microsimulation Stabilization
 - User Equilibrium
- Several Chapters of TRANSIMS Documentation
- Router/Microsimulator validation in progress
The Highway Network
Highway Network Inputs

* All Input Data provided by Maricopa Association of Governments

- 1,995 Internal TAZs
 - Area type ranging from 1-5, 5 being most rural
- 11 External TAZs
 - All area type 5
- 10,436 Nodes
 - First 11 correspond to external zone centroids
- 13,210 Links
 - 40% of these are one-way links
Input Highway Statistics

Frequency of Zone Area Types

Input Link Type Frequencies

Hourly Capacity per Lane on Input Links
Highway Network Parameters & Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGNAL_WARRANT_FOR_AREA_TYPE_1</td>
<td>COLLECTOR, COLLECTOR</td>
</tr>
<tr>
<td>SIGNAL_WARRANT_FOR_AREA_TYPE_2</td>
<td>MAJOR, COLLECTOR</td>
</tr>
<tr>
<td>SIGNAL_WARRANT_FOR_AREA_TYPE_3</td>
<td>MAJOR, COLLECTOR</td>
</tr>
<tr>
<td>SIGNAL_WARRANT_FOR_AREA_TYPE_4</td>
<td>MAJOR, MAJOR</td>
</tr>
<tr>
<td>SIGNAL_WARRANT_FOR_AREA_TYPE_5</td>
<td>MAJOR, MAJOR</td>
</tr>
<tr>
<td>MAXIMUM_ACCESS_POINTS</td>
<td>3</td>
</tr>
<tr>
<td>MINIMUM_SPLIT_LENGTHS</td>
<td>60, 60, 60, 60, 60</td>
</tr>
<tr>
<td>MINIMUM_LINK_LENGTH</td>
<td>10</td>
</tr>
<tr>
<td>MAXIMUM_LENGTH_TO_XY_RATIO</td>
<td>1.2</td>
</tr>
<tr>
<td>FIRSTEXTERNAL_ZONE_NUMBER</td>
<td>3000</td>
</tr>
<tr>
<td>COLLAPSE NODES_FLAG</td>
<td>FALSE</td>
</tr>
<tr>
<td>ADD UTURN TO DEADEND LINKS</td>
<td>YES</td>
</tr>
<tr>
<td>INTERSECTION_SETBACK_DISTANCE</td>
<td>15</td>
</tr>
</tbody>
</table>

Number of Input Node Records = 10436
Number of Input Link Records = 13210
Number of Input Zone Records = 2006

Highest Zone Number = 3010
Number of New Node Records = 10436
Number of New Link Records = 13210
Number of New Link Shapes = 0
Number of New Shape Records = 0
Number of New Activity Location Records = 45443
Number of New Parking Lot Records = 45443
Number of New Process Link Records = 90886
Number of New Pocket Lane Records = 0
Number of New Lane Connectivity Records = 63194
Number of New Unsignalized Node Records = 1221
Number of New Signalized Node Records = 2081

Number of External Connections = 11
Number of Short Links Increased in Length = 169
Number of Stop Signs = 691
Number of Yield Signs = 530
Number of Demand Actuated Single Ring Signals = 2081
Activity Location Zone Assignments

• All Activity Locations are assigned a zone
• Zone assignments based on proximity to centroid
• Areas of Phoenix where no major roadways exist
 – Mountain preserves
 – Borders with Salt River-Pima and Gila River Reservations
• Many Phoenix-area TAZ’s not allocated any Activity Locations
 – Result: failure to process trips to/from those zones
• Activity Location file was enhanced manually
 – Zone allocations of some activity locations were re-assigned
• Python Script created to automate this process
Traffic Analysis Zones

Zone assignment of activity locations based on proximity to highway link

[Map of a region with numerous points marked on it, representing activity locations.]
Transit Network Inputs

- **225 Routes**
 - Bus, Express Bus, and Light Rail
- **7 transit time periods**
 - Service runs from 4:00 am to 11:00 pm
 - AM Peak from 6:00 – 9:00 am
 - PM Peak from 3:00 – 6:00 pm
- **Dwell Times**
 - 20 seconds for all Bus Routes
 - 10 seconds for all Express Bus and Light Rail Routes
- “TIME” and “SPEED” between transit stops are calculated within TRANSIMS
Input Transit Statistics

Frequency of Headways in Peak Hour Transit Service

Frequency of Headways in Off-Peak Transit Service
Transit Network Parameters & Results

RANDOM_NUMBER_SEED: 12345
MAX_WARNING_MESSAGES: 10000000
TRANSIT_TIME_PERIODS: 4:00, 6:00, 9:00, 15:00, 18:00, 23:00
TRANSIT_TRAVEL_TIME_FACTOR: 1.0, 1.1, 1.22, 1.1, 1.25, 1.1, 1.0
MINIMUM_DWELL_TIME: 5
INTERSECTION_STOP_TYPE: FARSIDE

Number of Activity Location Records = 53641 (7518 new)
Number of Process Link Records = 107532 (15286 new)
Number of Transit Stop Records = 7643
Number of Transit Route Records = 14055
Number of Transit Schedule Records = 433085
Number of Transit Driver Records = 12426
U-Turns in Bus Routes and “Must Stop” Warnings

• When bus reaches its last stop, turns around to continue in opposite direction
 – Result: Route Node file contains the same node number twice in succession
 – Error Returned: No Lane Connectivity from Node X to Node X
 – Route Node file enhanced
 – The node at the end of the line is listed only once

• Bus routes that travel on freeways
 – No bus stops on freeways in Route Node file
 – Warning Returned: Route X must stop on link Y
 – Does not seem to interfere with network creation
Current 20-Mile Light Rail Line
Light Rail Specifications

- Must identify rail in the input link file

<table>
<thead>
<tr>
<th>ID</th>
<th>NODE</th>
<th>NODE</th>
<th>LENGTH</th>
<th>TYPE</th>
<th>LINES_A</th>
<th>FSPD_A</th>
<th>CAP_A</th>
<th>LINES_B</th>
<th>FSPD_B</th>
<th>CAP_B</th>
<th>USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>17414</td>
<td>11815</td>
<td>11816</td>
<td>802.4058882507324</td>
<td>LIGHTRAIL</td>
<td>1</td>
<td>6.7056</td>
<td>20</td>
<td>1</td>
<td>6.7056</td>
<td>20</td>
<td>LIGHTRAIL</td>
</tr>
<tr>
<td>17415</td>
<td>11815</td>
<td>11817</td>
<td>810.187176734924</td>
<td>LIGHTRAIL</td>
<td>1</td>
<td>8.9408</td>
<td>20</td>
<td>1</td>
<td>8.9408</td>
<td>20</td>
<td>LIGHTRAIL</td>
</tr>
<tr>
<td>17416</td>
<td>11816</td>
<td>11817</td>
<td>801.693068458557</td>
<td>LIGHTRAIL</td>
<td>1</td>
<td>6.7056</td>
<td>20</td>
<td>1</td>
<td>6.7056</td>
<td>20</td>
<td>LIGHTRAIL</td>
</tr>
<tr>
<td>17417</td>
<td>11817</td>
<td>11818</td>
<td>808.782455497742</td>
<td>LIGHTRAIL</td>
<td>1</td>
<td>6.7056</td>
<td>20</td>
<td>1</td>
<td>6.7056</td>
<td>20</td>
<td>LIGHTRAIL</td>
</tr>
<tr>
<td>17418</td>
<td>11818</td>
<td>11819</td>
<td>808.338865252073</td>
<td>LIGHTRAIL</td>
<td>1</td>
<td>6.7056</td>
<td>20</td>
<td>1</td>
<td>6.7056</td>
<td>20</td>
<td>LIGHTRAIL</td>
</tr>
<tr>
<td>17419</td>
<td>11819</td>
<td>11820</td>
<td>809.338865252073</td>
<td>LIGHTRAIL</td>
<td>1</td>
<td>6.7056</td>
<td>20</td>
<td>1</td>
<td>6.7056</td>
<td>20</td>
<td>LIGHTRAIL</td>
</tr>
<tr>
<td>17420</td>
<td>11820</td>
<td>11821</td>
<td>811.438793587849</td>
<td>LIGHTRAIL</td>
<td>1</td>
<td>6.7056</td>
<td>20</td>
<td>1</td>
<td>6.7056</td>
<td>20</td>
<td>LIGHTRAIL</td>
</tr>
<tr>
<td>17421</td>
<td>11821</td>
<td>11831</td>
<td>938.313261317029</td>
<td>LIGHTRAIL</td>
<td>1</td>
<td>8.9408</td>
<td>20</td>
<td>1</td>
<td>8.9408</td>
<td>20</td>
<td>LIGHTRAIL</td>
</tr>
<tr>
<td>17422</td>
<td>11821</td>
<td>11832</td>
<td>797.130617294132</td>
<td>LIGHTRAIL</td>
<td>1</td>
<td>8.9408</td>
<td>20</td>
<td>1</td>
<td>8.9408</td>
<td>20</td>
<td>LIGHTRAIL</td>
</tr>
<tr>
<td>17423</td>
<td>11822</td>
<td>11831</td>
<td>2447.1635450745</td>
<td>LIGHTRAIL</td>
<td>1</td>
<td>8.9408</td>
<td>20</td>
<td>1</td>
<td>8.9408</td>
<td>20</td>
<td>LIGHTRAIL</td>
</tr>
<tr>
<td>17424</td>
<td>11822</td>
<td>11834</td>
<td>3298.34061714478</td>
<td>LIGHTRAIL</td>
<td>1</td>
<td>8.9408</td>
<td>20</td>
<td>1</td>
<td>8.9408</td>
<td>20</td>
<td>LIGHTRAIL</td>
</tr>
<tr>
<td>17425</td>
<td>11823</td>
<td>11832</td>
<td>861.457217033386</td>
<td>LIGHTRAIL</td>
<td>1</td>
<td>6.7056</td>
<td>20</td>
<td>1</td>
<td>6.7056</td>
<td>20</td>
<td>LIGHTRAIL</td>
</tr>
<tr>
<td>17426</td>
<td>11824</td>
<td>11825</td>
<td>320.414399309432</td>
<td>LIGHTRAIL</td>
<td>1</td>
<td>6.7056</td>
<td>20</td>
<td>1</td>
<td>6.7056</td>
<td>20</td>
<td>LIGHTRAIL</td>
</tr>
</tbody>
</table>

- Must identify rail in the input route header file

<table>
<thead>
<tr>
<th>ROUTE</th>
<th>NAME</th>
<th>NODE</th>
<th>HEADWAY_1</th>
<th>HEADWAY_2</th>
<th>HEADWAY_3</th>
<th>HEADWAY_4</th>
<th>HEADWAY_5</th>
<th>HEADWAY_6</th>
<th>HEADWAY_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>224</td>
<td>LRR deadly</td>
<td>LIGHTRAIL</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>225</td>
<td>LRR dead</td>
<td>LIGHTRAIL</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
Light Rail Subarea Creation

• The MAG region is a very large scale area
 – Microsimulation best done for the specific area of interest, i.e., the Light Rail Corridor

• A 5-mile buffer deemed appropriate to capture the market of the Light Rail line

• Subarea creation process:
 – Create a 5-mile buffer around the existing 20-mile Light Rail Line and its planned extensions
 – Expand the buffer to include the extents of any TAZs that lie partially within the buffer
 • This step was done to avoid trip assignment issues involving zones only partially in the subarea
Example of Expanding the Buffer

5-mile Buffer

Subarea
Future Planned Extensions

Northwest Extension and Mesa Extension are being considered.
Light Rail Buffer: Existing and Future
Origin-Destination Matrices

- **O-D matrices provided by MAG**
 - 24 hr Drive Alone
 - 24 hr HOV
 - Local Bus Peak & Off Peak
 - Express/Rapid Bus Peak & Off Peak
 - Light Rail Peak & Off Peak
 - 24 hr Light, Medium, and Heavy Truck

- **Purpose distributions created from MAG-provided data**
 - ASU
 - HBO
 - HBU
 - NHW
 - HBW
 - NHO

Note: Express/Rapid Bus only included HBW trips
Origin-Destination Matrices

• Result: 26 O-D Matrices entered into TRANSIMS
 – Each has specific mode and purpose
• Matrices are zone-to-zone trip tables
• TRANSIMS does not accept fractional trips
 – Bucket Rounding was applied to each matrix to avoid loss of trips
• Results of Convert Trips
 – 15,092,164 Trips
 – 14,910,781 Vehicles
• Convert Trips Run Time = 18 minutes
Time-of-Day Distributions

- Time-of-day distributions created from NHTS 2009 Data
- Distributions by purpose
 - NHTS trips were categorized to match MAG model trip purpose labels
- One time-of-day distribution specifically for truck trips
- Smoothing time distributions:

```
SMOOTH_FIELD_NUMBER   3
SMOOTH_GROUP_SIZE     3
PERCENT_MOVED_FORWARD 20
PERCENT_MOVED_BACKWARD 20
NUMBER_OF_ITERATIONS  10
CIRCULAR_GROUP_FLAG   TRUE
```
Smoothed Time Distributions

HBW Purpose Time Distribution

ASU Purpose Time Distribution

NHW Purpose Time Distribution

Time Distribution for Trucks
Simulation Process

ROUTER STABILIZATION

- Router → Travel Plans
 - PlanSum* → LinkDelay*
 - PlanSelect* → HouseholdList*
 - Router* → Plans*
 - PlanPrep* → TravelPlans*

MICROSIMULATOR STABILIZER

- SubareaPlans* → SubareaPlans*
 - Microsimulator* → LinkDelay*
 - PlanSelect* → HouseholdList*
 - Router* → Plans*
 - PlanPrep* → TravelPlans*

USER EQUILIBRIUM

- PlanSum* → LinkDelay*
 - SubareaPlans* → SubareaPlans*
 - Microsimulator* → SubareaLinkDelay*
 - LinkDelay* → TotalLinkDelay*
 - Router* → Plans*
 - PlanCompare* → SelectedPlans*
 - PlanPrep* → TravelPlans*

Trip File
Router Stabilization Process
Router Stabilization

- 15 iterations of the process are run
 - 1st Router Run: About 1,808,000 Problems
 - Problems are eliminated by 15th iteration

- Majority of Router Problems are “Time Schedule” Problems

- Initial Router Run Time = 12 Hours (single core Dell Inspiron D630 laptop)

- Entire Router Stabilization process run time = 20:55:38
Router Stabilization Parameters

- **Router**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE_LIST_PATHS</td>
<td>FALSE</td>
</tr>
<tr>
<td>END_TIME_CONSTRAINT</td>
<td>5</td>
</tr>
<tr>
<td>PERCENT_RANDOM_IMPEDANCE</td>
<td>20</td>
</tr>
<tr>
<td>RANDOM_NUMBER_SEED</td>
<td>1234</td>
</tr>
<tr>
<td>WALK_SPEED</td>
<td>2</td>
</tr>
<tr>
<td>BICYCLE_SPEED</td>
<td>10</td>
</tr>
<tr>
<td>FIRST_WAIT_VALUE</td>
<td>15</td>
</tr>
<tr>
<td>TRANSFER_WAIT_VALUE</td>
<td>20</td>
</tr>
<tr>
<td>VEHICLE_TIME_VALUE</td>
<td>10</td>
</tr>
<tr>
<td>U_TURN_PENALTY</td>
<td>100</td>
</tr>
<tr>
<td>TRANSFER_PENALTY</td>
<td>200</td>
</tr>
<tr>
<td>RAIL_BIAS_FACTOR</td>
<td>0.8</td>
</tr>
<tr>
<td>MAX_WALK_DISTANCE</td>
<td>1500</td>
</tr>
<tr>
<td>MAX_BICYCLE_DISTANCE</td>
<td>10000</td>
</tr>
<tr>
<td>MAX_WAIT_TIME</td>
<td>60</td>
</tr>
<tr>
<td>MIN_WAIT_TIME</td>
<td>3</td>
</tr>
<tr>
<td>MAX_NUMBER_OF_TRANSFERS</td>
<td>4</td>
</tr>
<tr>
<td>MAX_CIRCUITY_RATIO</td>
<td>5</td>
</tr>
<tr>
<td>MAX_ROUTING_PROBLEMS</td>
<td>10000000</td>
</tr>
<tr>
<td>EQUATION_PARAMETERS_1</td>
<td>BPR, 0.25, 4, 1</td>
</tr>
<tr>
<td>EQUATION_PARAMETERS_5</td>
<td>BPR, 0.25, 2, 1</td>
</tr>
</tbody>
</table>

- **Plan Select**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERCENT_TIMEDIFFERENCE</td>
<td>5</td>
</tr>
<tr>
<td>MINIMUM_TIMEDIFFERENCE</td>
<td>2</td>
</tr>
<tr>
<td>MAXIMUM_TIMEDIFFERENCE</td>
<td>30</td>
</tr>
<tr>
<td>SELECT_TIME_PERIODS</td>
<td>4:00..24:00</td>
</tr>
<tr>
<td>MAXIMUM_PERCENT_SELECTED</td>
<td>10</td>
</tr>
<tr>
<td>SELECTION_PERCENTAGE</td>
<td>50</td>
</tr>
<tr>
<td>RANDOM_NUMBER_SEED</td>
<td>1234</td>
</tr>
</tbody>
</table>
Microsimulation Stabilization Process
Microsimulation Stabilization

- 10 iterations of the process
- Entire Microsimulation Stabilization process run time = 6:25:04
- First Microsimulator Run returned 3,065 problems
 - Majority were departure time problems
- Subarea Plans
 - Need to ensure that the external offset length in Subarea Network is sufficient

Microsimulator Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE_LIST_PATHS</td>
<td>FALSE</td>
</tr>
<tr>
<td>CELL_SIZE</td>
<td>6</td>
</tr>
<tr>
<td>TIME_STEPS_PER_SECOND</td>
<td>1</td>
</tr>
<tr>
<td>SIMULATION_START_TIME</td>
<td>0:00</td>
</tr>
<tr>
<td>SIMULATION_END_TIME</td>
<td>24:00</td>
</tr>
<tr>
<td>SPEED_CALCULATION_METHOD</td>
<td>CELL-BASED</td>
</tr>
<tr>
<td>PLAN_FOLLOWING_DISTANCE</td>
<td>525</td>
</tr>
<tr>
<td>LOOK_AHEAD_TIME_FACTOR</td>
<td>1.0</td>
</tr>
<tr>
<td>LOOK_AHEAD_LANE_FACTOR</td>
<td>4.0</td>
</tr>
<tr>
<td>LOOK_AHEAD_DISTANCE</td>
<td>260</td>
</tr>
<tr>
<td>DRIVERREACTION_TIME</td>
<td>0.7</td>
</tr>
<tr>
<td>RANDOM_NUMBER_SEED</td>
<td>0</td>
</tr>
<tr>
<td>MINIMUM_WAITING_TIME</td>
<td>60</td>
</tr>
<tr>
<td>MAXIMUM_WAITING_TIME</td>
<td>120</td>
</tr>
<tr>
<td>MAX_DEPARTURE_TIME_VARIANCE</td>
<td>60</td>
</tr>
<tr>
<td>MAX_ARRIVAL_TIME_VARIANCE</td>
<td>60</td>
</tr>
</tbody>
</table>
User Equilibrium Process
User Equilibrium

- Process was established similar to the White House Area Transportation Study
- 10 iterations of the process
- Entire User Equilibrium process run time = 42:37:34
- LinkDelay.exe
 - Inputs are subarea link delay and average link delay from region
 - Output is a regional average link delay
Validation in Progress

- First validation revealed problems with the network
 - All previously listed information on simulation processes could change with new network enhancements implemented recently
- Most recent validation: traffic volumes under-estimated

Summary Statistics by Volume Level

<table>
<thead>
<tr>
<th>Volume Level</th>
<th>Num.</th>
<th>-----Volume-----</th>
<th>---Difference---</th>
<th>--Abs.Error--</th>
<th>Std. %</th>
<th>R</th>
<th>----V/C----</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000 to 25000</td>
<td>22</td>
<td>331982</td>
<td>348195</td>
<td>-16213</td>
<td>-4.7</td>
<td>5225</td>
<td>4544</td>
</tr>
<tr>
<td>25000 to 50000</td>
<td>13</td>
<td>380954</td>
<td>515343</td>
<td>-134389</td>
<td>-26.1</td>
<td>16002</td>
<td>9053</td>
</tr>
<tr>
<td>50000 to 75000</td>
<td>27</td>
<td>886579</td>
<td>1690446</td>
<td>-803867</td>
<td>-47.6</td>
<td>30323</td>
<td>13921</td>
</tr>
<tr>
<td>75000 to 100000</td>
<td>9</td>
<td>341716</td>
<td>756630</td>
<td>-414914</td>
<td>-54.8</td>
<td>46102</td>
<td>16602</td>
</tr>
<tr>
<td>100000 to 500000</td>
<td>13</td>
<td>912031</td>
<td>1489860</td>
<td>-577829</td>
<td>-38.8</td>
<td>44448</td>
<td>23831</td>
</tr>
<tr>
<td>TOTAL</td>
<td>84</td>
<td>2853262</td>
<td>4800474</td>
<td>-1947212</td>
<td>-40.6</td>
<td>25410</td>
<td>20478</td>
</tr>
</tbody>
</table>

Summary Statistics by Facility Type

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Num.</th>
<th>-----Volume-----</th>
<th>---Difference---</th>
<th>--Abs.Error--</th>
<th>Std. %</th>
<th>R</th>
<th>----V/C----</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway</td>
<td>68</td>
<td>2593830</td>
<td>4556794</td>
<td>-1962964</td>
<td>-43.1</td>
<td>30337</td>
<td>19707</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>16</td>
<td>259432</td>
<td>243680</td>
<td>-15752</td>
<td>6.5</td>
<td>4471</td>
<td>2849</td>
</tr>
<tr>
<td>TOTAL</td>
<td>84</td>
<td>2853262</td>
<td>4800474</td>
<td>-1947212</td>
<td>-40.6</td>
<td>25410</td>
<td>20478</td>
</tr>
</tbody>
</table>
Validation in Progress

- Just received more accurate and complete validation file from MAG
- In the meantime, checking network connectivity and making enhancements
 - Dummy trip file from Activity Location 1 to all other Activity Locations
 - Entered into router and then Arcview Plans
TRANSIMS Documentation

• Learning phase of the project suggested need for more comprehensive documentation
• Prompted the creation of “TRANSIMS for Dummies”
 – The goal: to create a one-stop document that includes all the information user will need to know about the system in informal language
 – Will facilitate quick learning and hopefully wider use of TRANSIMS
• Eventual Goal with TRANSIMS for Dummies
 – Allow user community to access via wiki and make enhancements
Project Wiki Site

• Please visit our project Wiki site:
 http://simtravel.wikispaces.asu.edu/TRANSIMS+Application+and+Deployment

• TRANSIMS for Dummies
 http://simtravel.wikispaces.asu.edu/TRANSIMS+For+Dummies

• Weekly Progress Updates on this Project
 http://simtravel.wikispaces.asu.edu/TRANSIMS+Project+Updates

• Details on other SimTRAVEL Projects
 – SimTRAVEL: Simulator of Transport, Routes, Activities, Vehicles, Emissions, and Land
 http://simtravel.wikispaces.asu.edu/
Where We Are Going…

- **Large-scale multimodal network successfully created**
 - Minor issues related to poor connectivity
- **Ongoing validation checks**
 - Router testing reveals approximately 12% of trips are experiencing problems
 - Accounting of HOV lane trips
- **Phase 3 tasks underway**
 - Synthetic population created using PopGen
 - NHTS2009 add-on survey data for MAG being processed
 - Plan to apply TRANSIMS Activity generator
 - Plan to use MAG mode choice model
Acknowledgements

- Brian Grady, Resource Systems Group, Inc.
- Terry Phemister, HDR, Inc.
- Vladimir Livshits, Sreevatsa Nippani, and Wang Zhang, Maricopa Association of Governments