
David Roden, AECOM

 User interface concerns
◦  Network files are too cumbersome for efficient editing

  Version 3/4 field names, multi-file/record dependencies,…

◦  It is too easy to introduce errors in control files
  Inconsistent key names, units of measure, key groups,…

◦  Plan file processing and sorting problems
  Node/link, traveler scaling, multi-leg trips, time/traveler sort,…

◦  Partitioning difficulties
  File extensions vs. command lines, aggregate statistic reports,…

◦  How to link tools into modeling algorithms
  Router/Microsimulator stabilization, user-equilibrium convergence

◦  GUI tools for editing, running and visualizing?

 Functionality and performance needs
◦  A higher fidelity and scalable Microsimulator is needed

  Cell-based speeds, lost vehicles, signal coordination, …
  Single processor limitations – simulation size and processing time

◦  Better coordination between Router and Microsimulator
  Plan leg scheduling issues, transit options, on-the-fly re-routing

◦  Path attributes to support other models/software
  Forward and backward path building (time control points)
  One-to-many skims without creating plan files
  Linkable routing service class/subroutine

◦  The custom data classes are too complicated for new
programmers to quickly build upon
  Needs to be easier to learn/use with fewer/no variations

 Simplify Editing
◦  Simplify the network coding requirements
◦  Reduce the number of coded dependencies between files
◦  Use data nesting to avoid sorting problems and record

inconsistencies

 Reduce User Errors
◦  Provide more program-based help information
◦  Standardize control keys and key definitions
◦  Interpret user-provided unit specifications

 Enhance Performance
◦  Multi-threading and multi-processor options
◦  Streamline the Router  Plan Processing 

Microsimulator interaction
◦  Enhance the Router and Microsimulator functionality and

fidelity

 More Programmer Friendly
◦  Standard Template Library

  strings, streams, vectors, maps, etc.

◦  Centralize codes, standardize and automate processing
◦  Create DLL services for linkages to other software

 English and metric units
◦  Control key or global configuration file

  Defaults to metric for backward compatibility

◦  Consistent internal units
  Tenths of feet (meters), feet/second (meters/second), or seconds

◦  Automatically converts units from one system to the other

 Global time format
◦  Control key supports minutes and hour clocks (e.g., 27:00)

◦  Individual control keys can include time units (e.g., 15 minutes)
◦  Model start and end time

  Multiple days and start times other than midnight (e.g., 3:00)

 New control key data services
◦  Nesting levels, optional/required, data type, help messages

  Written to the screen with –h command

◦  Help messages provide default values and units
◦  Values read using default units or user overrides
◦  Standard methods for data type conversion, range

checking and error messaging
◦  Key and range values are converted to English/metric units

when printed to the report/screen

 New XML flag (-x)
◦  Creates an XML file containing the control key structure

and key values
◦  May also contain processing results/values
◦  XML2CTL creates a control file from an XML file

  Creates a full key template for the program

 Enhanced *.def file
◦  Specifies software version
◦  Includes units descriptions for all fields

  Enables English/metric conversions
  Automates text string/time conversion

◦  Binary files use codes rather than strings to reduce file
size and improve performance

 Standard file key conventions
◦  Input file keys = *_FILE and *_FORMAT
◦  Output file keys = NEW_*_FILE and NEW_*_FORMAT
◦  TAB_DELIMITED is the new default file type

  Several Version 3 file formats are no longer supported.

 Network files
◦  Key names changed to standard and “refined”
◦  Network directory key dropped

  All file use the project directory or current working directory

◦  Data errors are replaced by warning messages
◦  Record IDs are converted to internal indices

  Relational keys are enforced

 Primary changes
◦  Multi-node signals and reusable timing and phasing plans
◦  Transit schedules restructured around run numbers
◦  Parking cost and access/egress time by time and use type
◦  Tolls added to lane use file

  Tolls by lane and fixed/variable processing rates
  Simulate HOT lanes, toll plazas and ramp metering

◦  Process links mostly eliminated  access link file
  Only needed for special connections

◦  No pocket lanes in link file – only main lanes
  Pocket lanes use left or right side numbering

◦  Lane range codes use “L” and “R” codes (e.g., 2..L)
  Reduce lane renumbering problems

 Primary changes
◦  Trip and activity files consolidated into trip file

  OD location/time + Activity duration

◦  New plan file
  Full trip in a single nested record
  Includes input trip fields and path skim data in header
  Travel time, distance, cost and impedance on each link

◦  Household and person files combined
  Vehicles numbered using household ID

◦  Household List  Selection File
  Household, person, tour, and trip selection options

◦  Version 3.x link-delay and vehicle type files dropped

  Split Router into multiple programs and services
◦  Router (trip file) and PathSkim (one-to-many)
◦  Router Service added as an executable platform

  Process control keys and prepare data
◦  Path Builder class in SysLib

  Supports multiple threads and DLL integration

 New features
◦  Forward and backward paths based on time constraints
◦  Builds paths with or without access links
◦  Uses impedance sorting to minimize transit transfer problems
◦  Models parking time and cost by time of day
◦  Lane use rather than link use restrictions
◦  Uses consistent mode codes for all TRANSIMS modules
◦  Outputs link-based plans for complete trips

  No traveler scaling, link vs. node files, walk-leg-only trip problems

 New design
◦  Cell-based  actual vehicle locations and speeds

  Lane-based car following with intersection control-based sorting
◦  Multi-threading and multi-processor (MPI) versions

 New features
◦  Multi-node signal coordination
◦  Integrated multi-modal trip plans

  Critical for transit trip schedule coordination
◦  No link/vehicle length/speed restrictions

  Length, maximum speed, and acceleration-deceleration rates
  Tenths of feet (meters), feet/second (mps), and seconds

  Output MOVES speed bins (5 mph)

 Performance research
◦  Time sorting vs. plan indexing
◦  On-the-fly re-routing of lost vehicles

  Standard Template Library
◦  All data structures use vectors, maps and strings

  Easier for C++ programmers to read and write
  Tighter data management – creation, use, and clean-up

 Consolidated and streamlined program services
◦  Centralized and automated code/text conversions
◦  Standard processing methods for network and demand files

  Makes code sharing between programs feasible

◦  Screen and report outputs routed through STL streams
◦  Expanded functionality for standard strings

  Trimming, cleaning and parsing, case insensitive comparisons, printf methods

◦  Time processing encapsulated in Dtime class

  SysLib can be dynamically linked in Windows and Linux
◦  The Boost library is used for multi-threading
◦  The copyright notice is now “TRANSIMS Open-Source”

