Travel Demand Modeling for a Small MPO Using TRANSIMS
Study Background

• The study was funded by the Federal Highway Administration (FHWA)

• The study started in November 2008 and completed on November 2009

• This study was a complimentary study to another project titled Illinois Travel Demand Modeling Technical Support Group, funded by the Illinois Department of Transportation through Illinois Center for Transportation, ICT.
Study Objectives

• To promote better understanding of travel behavior and transportation systems through development, calibration, validation, and analysis of a travel demand model for a small sized MPO using TRANSIMS.

• To develop methods for applying TRANSIMS modules to evaluate the transportation policies and issues related to planning agencies (especially small MPOs) as identified in SAFETEA-LU 5512.

• To extend TRANSIMS technology by identifying issues and opportunities of using TRANSIMS for a small sized MPO.
Key Parts of the Study

• Evaluating Travel Demand Modeling status in small MPOs in Illinois.

• Determining functional requirements for TRANSIMS Track 1 implementation in a small MPO.

• Data requirements and conversion steps for Track 1 implementation of TRANSIMS.

• Model calibration and validation steps.

• TRANSIMS model sensitivity analysis with highway network changes.

• Comparing Four-Step Travel Model and TRANSIMS use issues for a small MPO.
TDM Status in Illinois MPOs

Building the Future...Together!
Functional Requirements for TRANSIMS Implementation

Building the Future...Together!
Functional Requirements for TRANSIMS Implementation

<table>
<thead>
<tr>
<th>Input Data</th>
<th>Purpose</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway (Node, Link)</td>
<td>Network Preparation & Editing</td>
<td>MPO (Transportation Planning/GIS Dept.)</td>
</tr>
<tr>
<td>Traffic Analysis Zone</td>
<td></td>
<td>MPO (Transportation Planning/GIS Dept.)</td>
</tr>
<tr>
<td>Trip Table</td>
<td>Route Planning</td>
<td>MPO (Transportation Planning Dept.)</td>
</tr>
<tr>
<td>Vehicle Type</td>
<td>Microsimulation</td>
<td>MPO (Transportation Planning Dept.)</td>
</tr>
<tr>
<td>Traffic and Transit Volumes</td>
<td>Calibration & Validation</td>
<td>MPO, Cities, Transit Authorities</td>
</tr>
</tbody>
</table>
Trip Table Conversion

In House Household Survey 2002

In House CUBE 4 Step Model

Production/Attraction Splits

Diurnal Distribution Data

SmoothData

Smoothed Diurnal Distributions

TRANSIMS Trip Tables

Link, Node

ConvertTrips

Activity Location Process Link

Trip

Population

Household

Vehicle

Building the Future...Together!
Diurnal Distribution

Time of Day vs. Percentage of Trips
Router, Microsimulator, and Convergence Iterations

<table>
<thead>
<tr>
<th>Process</th>
<th>Iterations</th>
<th>% Time Diff.</th>
<th>Min. Time</th>
<th>Max. Time</th>
<th>Diff.</th>
<th>Selection %</th>
<th>Max. %</th>
<th>Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router Stabilization</td>
<td>1 - 5</td>
<td>4</td>
<td>2min</td>
<td>30min</td>
<td></td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Router Stabilization</td>
<td>6 - 10</td>
<td>V/C=2.00</td>
<td>2min</td>
<td>30min</td>
<td></td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Microsimulator Stabilization</td>
<td>11 - 15</td>
<td>4</td>
<td>2min</td>
<td>30min</td>
<td></td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Convergence</td>
<td>16 - 25</td>
<td>4</td>
<td>2min</td>
<td>30min</td>
<td></td>
<td>50</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Building the Future...Together!
Model Calibration and Validation

- Testing the following model components:
 - Network
 - Socio-economic data
 - Trip Generation
 - Trip Distribution
 - Traffic Assignment
 - A network-wide validation comparison to field counts utilizing Validate utility program
 - Using Screenlines
 - Critical links comparison using major and minor arterials
Model Calibration and Validation
Model Calibration and Validation

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>FHWA Guideline(^3)\ (+/-)</th>
<th>CUUATS 4-Step Model</th>
<th>CUUATS TRANSIMS Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway</td>
<td>7%</td>
<td>-3.10%</td>
<td>2.80%</td>
</tr>
<tr>
<td>Major Arterial</td>
<td>10%</td>
<td>1.60%</td>
<td>-1.20%</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>15%</td>
<td>-13.80%</td>
<td>8.40%</td>
</tr>
<tr>
<td>Collector</td>
<td>25%</td>
<td>-42.60%</td>
<td>4.30%</td>
</tr>
</tbody>
</table>
Model Calibration and Validation

<table>
<thead>
<tr>
<th>Measure</th>
<th>FHWA Guideline</th>
<th>CUUATS 4-Step Model</th>
<th>CUUATS TRANSIMS Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation Coefficient</td>
<td>0.88</td>
<td>0.88</td>
<td>0.901</td>
</tr>
<tr>
<td>Percent Diff Reg. Wide</td>
<td>5%</td>
<td>12%</td>
<td>4.3%</td>
</tr>
</tbody>
</table>
Model Calibration and Validation

Building the Future...Together!
Model Sensitivity Analysis

Building the Future...Together!
Model Sensitivity Analysis

<table>
<thead>
<tr>
<th>Roadway</th>
<th>24-Hour Volume</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Estimated</td>
</tr>
<tr>
<td></td>
<td>Observed (Year)</td>
<td>(TRANSIMS Output)</td>
</tr>
<tr>
<td>I-57 South of Curtis Road</td>
<td>28,980 (2005)</td>
<td>29,586</td>
</tr>
<tr>
<td>I-57 North of Curtis Road</td>
<td>28,980 (2005)</td>
<td>29,749</td>
</tr>
<tr>
<td>Curtis Road to I-57 SB</td>
<td>650 (2009)</td>
<td>692</td>
</tr>
<tr>
<td>I-57 NB to Curtis Road</td>
<td>750 (2009)</td>
<td>2,011</td>
</tr>
<tr>
<td>I-57 SB to Curtis Road</td>
<td>1,370 (2009)</td>
<td>1,105</td>
</tr>
<tr>
<td>Curtis Road to I-57 NB</td>
<td>1,375 (2009)</td>
<td>1,760</td>
</tr>
<tr>
<td>Curtis Road E of I-57 Ramps</td>
<td>No data</td>
<td>2,916</td>
</tr>
<tr>
<td>Curtis Road W of I-57 Ramps</td>
<td>No data</td>
<td>1,613</td>
</tr>
</tbody>
</table>
4-Step TDM and TRANSIMS

4 Step Model

- Trip Generation
- Trip Distribution
- Mode Choice
- Traffic Assignment

TRANSIMS

- Population Synthesizer
- Activity Generator
- Router
- Microsimulator

Feedback
4-Step TDM and TRANSIMS

• The cost of four-step travel model software packages is the biggest initial cost for a small sized MPO.

• Skill development for software operation (training) and maintenance costs are also significant, e.g. typical yearly maintenance fee is around $5,000.

• TRANSIMS is available free of cost, but it requires strong GIS capabilities.

• TRANSIMS training and maintenance are also available free of cost.
Opportunities for Future Work

- Developing travel models for small sized MPOs in Illinois which do not have a travel demand model in place by considering both Track 1 implementation and integrating other Population Synthesizer and Activity Generator models blended with the Router and Microsimulator modules.

- Utilizing the TRANSIMS travel model for emergency evacuation planning for small urbanized areas.

- Addition of transit component with the current TRANSIMS based model for Champaign-Urbana Urbanized Area.
Thank You!

Building the Future...Together!
Questions?