

... for a brighter future

Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

TRANSIMS Training Course at TRACC Transportation Research and Analysis Computing Center

Part 10

Trip Table Conversion

Dr.-Ing. Hubert Ley

Transportation Research and Analysis Computing Center

Last Updated: April 21, 2008

Contents

- Introduction
- Context of ConvertTrip Usage
- Simplified Trip-Based TRANSIMS Models
- The TRANSIMS Network and Trips
- Typical Trip Data
- Using Trip Tables in TRANSIMS
- Combining Multiple Data Sets
- Sample ConvertTrips Control File
- Problem Resolution: Access Restrictions
- Problem Resolution: Path Building
- Additional Settings

Introduction

- TRANSIMS has been designed as an activity-based simulation tools based on census population data and activity surveys for the area being modeled
 - TRANSIMS depends heavily on the availability and quality of survey data
 - Surveys are expensive to obtain and need frequent updates
 - The complexity of modeling increases significantly by building a synthetic population and creating suitable activity patterns for the entire population
- Therefore, TRANSIMS can also be operated based on available trips and trip distribution data available from metropolitan planning organizations
 - Trip data is the basis for typical MPO planning purposes
 - Starting with existing data makes it much easier to create a metropolitan TRANSIMS model from scratch
 - Populations and activities can be added in the future based on the need for modeling specific scenarios
 - Trip data is typically based on traffic analysis zones with centroids being connected to the road network to load traffic demand appropriately

The Complete TRANSIMS Model

- Input Data for Modules
 - Transportation Network
 - Streets, Intersections, Signals
 - Transit Routes and Schedules
 - Land Use Data, Zoning Information
 - Transit Lines and Schedules
 - Census Data for Population*
 - Household Activity Surveys*
 - Itinerant Travelers and Trips
 - Vehicle Characteristics and Prototypes

* Trip-based models do not need this data

Generalized TRANSIMS Flow Chart

The TRANSIMS Network and Trips

Primary Challenges:

- How can trips be undertaken without having ever built an actual population?
- Where do trips start and end? How do traffic analysis zones and activity locations correlate?
- How is aggregate trip data extrapolated for use of a synthetic population?
- What format does trip data come in typically and how is it converted?

Typical Trip Data

- Typical trip data comes in form of tables describing how many trips are being taken from any traffic analysis zone to any other traffic analysis zone for a given time interval (typically a day, see sample data on the right)
- Trip data is typically aggregated for the whole day
- Zones are at a relatively low resolution compared to TRANSIMS street networks
- For Chicago, there are 1950 traffic analysis zones
- Trip tables are often available for specific subsets such as
 - HBW
 - HBO
 - Transit...

	From	То	# of Trips
	1	1	18
	1	2	232
	1	3	365
	2	1	240
	2	2	23
24	2	3	278

Diurnal Distributions

- Diurnal distributions describe the total number of trips as a function of daytime
- Diurnal distributions vary widely from area to area and from trip purpose to trip purpose
- They represent another form of aggregate data and can be used in combination with the corresponding trip tables to reconstruct detailed trips from aggregate data
- Smoothing can be used to make diurnal distributions more suitable for trip conversion (the SmoothData tool)

Typical Trip Data and the ConvertTrips Tool

- Transims provides a tool ConvertTrips to create approximated specific trips for an entire synthetic population based on available trip tables
 - Without a synthetic population based on Census data, ConvertTrip creates an artificial person and vehicle for each specific trip to place it onto the network
 - Without basing the trips on the activities of a specific person, otherwise related trips appear to be undertaken by different individuals
- Trips start and end points are extrapolated from aggregate zoning locations to specific TRANSIMS activity locations
 - A real work tour is being represented by some individual leaving at some time in the morning from somewhere close by and retuning as a different individual at some time in the afternoon to yet another location close by
- Diurnal distributions must match the corresponding trip table to lead to defensible results

Resolution of Zoning Data versus Road Network

Using Trip Tables in TRANSIMS

- ConvertTrips generates large trip tables with one record for each specific trip undertaken in the simulation area
- The records specify details such as
 - Start and estimated end time for each trip
 - The exact activity locations for both start and destination
 - The mode of travel
- It also creates one new synthetic person and one new vehicle for each trip
- These records can be used by the TRANSIMS router to create exact travel plans for subsequent use in the microsimulator
- The extrapolation of aggregated trip and diurnal distribution data leads to large trip files, e.g. 1.4GB for 25,500,000 daily automobile trips in the Chicago Metropolitan Area

Combining Multiple Data Sets

- ConvertTrips can operate on a large number of data sets
- Each data set can have its own diurnal distribution
- Weight can be applied for both choosing the destinations or origins of trips
- Diurnal distributions can be complex, and an internal scripting language can be used to assign specific diurnal distributions to each traffic analysis zone
- For Chicago, there are 10 data sets for HBW, HBO, NHB, Airport Travel, and several classes of trucks, plus 3 transit and 3 park and ride data tables
- All these can be converted in a single run of ConvertTrips
- An example control file is shown on the next slide to illustrate the control keys

	#		
	DEFAULT_FILE_FORMAT TAB_DELIMITED		TRAVEL_MODE_CODE_2 2 # drive
	#		AVERAGE_TRAVEL_SPEED_2 15 # m/s
	# TRANSIMS network files to be used as input for this run		VEHICLE_TYPE_2 1 # car
	#		ORIGIN_WEIGHT_FIELD_2 USER1
	NET_DIRECTORY ././network/production		DESTINATION_WEIGHT_FIELD_2 USER2
	NET ACTIVITY LOCATION TABLE FullArea Activity Location	-	H hha tring
	NET PROCESS LINK TABLE FullArea Process Link		# IDD UIPS TRID TABLE FUE 7 ////CMAD/Trips//orsign//logut Trips bbo
	#		
а.	π		
а.			
			$\Delta = 15 \ \mu m/s$
	NEW_IRIP_FILE//actwity/Irip		VEHICLE TVDE 7 1 # car
	NEW_POPULATION_FILE//household/Population		
	NEW_HOUSEHOLD_FILE//household/Household		
	NEW_VEHICLE_FILE//vehicle/Vehicle		
	#		# nhh trins
	# General conversion parameters		TRIP TABLE FILE 8 / / / /CMAP/Trips/Version//Input Trips.nbb
	#		TRIP TIME FILE 8 / /trips/diurnal.nbb
	STARTING HOUSEHOLD ID 1		TRIP PURPOSE CODE 8 8 # counter
			TRAVEL MODE CODE 8 2 # drive
2.1			AVERAGE TRAVEL SPEED 8 15 #m/s
			VEHICLE TYPE 8 1 # car
	RANDOM_NUMBER_SEED 12345		ORIGIN WEIGHT FIELD 8 USER1
	VEHICLE_TYPE_FILE//vehicle/VehicleType		DESTINATION WEIGHT FIELD 8 USER2
	# airport trips		# hbw trips
	TRIP_TABLE_FILE_1 ./././CMAP/Trips/Version4/Input_Trips.airpoe		TRIP_TABLE_FILE_10//./CMAP/Trips/Version4/Input_Trips.hbw
	TRIP_TIME_FILE_1/./trips/diurnal.airpoe		TRIP_TIME_FILE_10//trips/diurnal.hbw
	TRIP PURPOSE CODE 1 1 # counter		TRIP PURPOSE CODE 10 10 # counter
	TRAVEL MODE CODE 1 2 # drive		TRAVEL MODE CODE 10 2 # drive
	Λ //EPACE TRA//EL SPEED 1 15 #m/c		AVERAGE_TRAVEL_SPEED_10 15 # m/s
			VEHICLE_TYPE_10 1 #car
÷.			ORIGIN_WEIGHT_FIELD_10 USER1
			DESTINATION_WEIGHT_FIELD_10 USER2
	DESTINATION_WEIGHT_FIELD_1 USER2		
_			
	# external trips		

- TRIP_TABLE_FILE_2 .../. //CMAP/Trips/Version4/Input_Trips.autopoe
- TRIP_TIME_FILE_2 .../. /trips/diurnal.autopoe
- TRIP_PURPOSE_CODE_2 2 # counter

= # DEFAULT_FILE_FORMAT TAB DELIMITED # # TRANSIMS network files to be used as input for this run # NET_DIRECTORY ../../network/production NET_ACTIVITY_LOCATION_TABLE FullArea_Activity_Location NET_PROCESS_LINK_TABLE FullArea_Process_Link # # New TRANSIMS files to be created by this run # NEW_TRIP_FILE ../../activity/Trip NEW_POPULATION_FILE ../../household/Population NEW_HOUSEHOLD_FILE ../../household/Household NEW_VEHICLE_FILE ../../vehicle/Vehicle

#	
# General conversion parameters	
#	
STARTING_HOUSEHOLD_ID	1
STARTING_VEHICLE_ID	1
TIME_OF_DAY_FORMAT	S
RANDOM_NUMBER_SEED	1
VEHICLE_TYPE_FILE	/
#	

1 1 SECONDS 12345 ../../vehicle/VehicleType

- #---- airport trips ----
- **#**
- TRIP_TABLE_FILE_1
- TRIP_TIME_FILE_1
- TRIP_PURPOSE_CODE_1
- TRAVEL_MODE_CODE_1
- AVERAGE_TRAVEL_SPEED_1
- VEHICLE_TYPE_1
- ORIGIN_WEIGHT_FIELD_1
- DESTINATION_WEIGHT_FIELD_1

../../../CMAP/Trips/Version4/Input_Trips.airpoe

../../trips/diurnal.airpoe

- 1 # counter
- 2 # drive
- **15** # m/s
- 1 # car
- USER1
- **USER2**

= #

. . .

Problem Resolution: Access Restrictions

Problem Resolution: Path Building

Setting weights for external entry and exit points when assigning trips to activity locations prevents external trips on one-ways connectors to encounter path-building problems (see user1 and user2 in the How-To)

Additional Settings

ConvertTrips is well-documented in a general tool description as well as in one of the How-Tos available from the TRANSIMS site

A selected list of features:

- Zone equivalency: Zone groups represent large geographic areas or governmental entities (see sample on the right)
- Trip Purpose
- Travel Mode
- Return Trip Offset
- ConvertTrips can be run successively to append trips from multiple runs
- And much more ...

Sample Zone Group File

1 0 Portland CBD - 1 111...16 20 West Suburbs - 2 2 1 79..307, 1248..1253 3 0 Southwest Suburbs - 3 3 1 308..403, 931..933 40 Southeast Suburbs - 4 4 1 404..557, 934..943, 1254..1258 50 East Portland - 5 5 1 561..563, 714..721, 731..738, 763..929, 949..961, 963..969 6 0 East Suburbs - 6 6 1 558..560, 564..713, 722..730, 739..762, 1259..1260 70 West Portland - 7 7 1 17..78, 930, 944..948, 962, 1247 80 Clark County - 8 8 1 970..1246

Credits and Acknowledgements

- GIS visualization materials were mostly developed at Argonne based on the TRANSIMS tools developed by AECOM for USDOT
- Chicago road and transit network data used in some of the examples was provided by the Chicago Metropolitan Agency for Planning
- USDOT provided the funding for the development of these training materials
- USDOT provided the funding for the TRACC computing center and the resources necessary to perform these training session

