

... for a brighter future

TRANSIMS Training Course at TRACC Transportation Research and Analysis Computing Center

Part 9

TRANSIMS Control Files

Dr.-Ing. Hubert Ley

Transportation Research and Analysis Computing Center

Last Updated: April 21, 2008

Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Contents

- TRANSIMS Control File History
- Invocation of TRANSIMS Tools
- TRANSIMS Control File Semantics
- Typical Problems
- Log Files
- Network File Specifications and the Project Directory
- Arrays of Control Keys and Value Lists
- A Sample Control File for the Router

TRANSIMS Control File History

- The specific implementation of the control keys in TRANSIMS dates back to early developments
- TRANSIMS used to allow for include file logic, which could lead to a level of confusion about settings such as the project directory or network directory
- It was also common practice to place the control keys for many tools into a single file, having unrelated executables disregard the keys that they would not use internally
- Current practice is to provide a single control file for each invocation of a tool. A new option "-K" permits the user to receive warnings for any key that is specified in the control file but is not used by the tool.

Invocation of TRANSIMS Tools

Router – K – B Router.ctl

This will execute the router based on the keys specified in the Router.ctl control file

Router

If no control file is specified, the tool will ask for the name of a control file interactively.

Router Router.ctl 3

If a number is specified at the end, the control file is interpreted differently. Partitionable files are opened using special extensions such as ".tAA", ".tAB", based on the file specifications given in the control files

Router -H

The –H option lists all allowable control keys for the executable

TRANSIMS Control File Semantics

- Control files follow these specific semantics:
 - Both DOS/Windows and Linux text files are allowed on both platforms
 - Empty lines (white space) are allowable anywhere in the control file
 - The "#" sign at the beginning of the line marks the line as a comment
 - All input is provided as pairs of a control key and a corresponding value or list of values (key/value pair)
 - Comments are not allowed at the end of a key/value pair because the text will become part of the value (it may work at times though)
 - A key/value pair is separated by white space, meaning either tab characters or blanks. The value starts with the first non-white character and ends at the end of the line.
 - Control keys are all upper case and are case sensitive. Values are mixed case or numeric and may also be case sensitive.
 - Boolean keys take the values true/false/yes/no/1/0 in both upper and lower case

Typical Problems

- Misspelled key names
 - Make sure all keys are spelled in upper case
 - Add the –K option to the executable to turn key checking on (this will create warnings for keys that are misspelled or that are not used by the current tool)
 - Use the -H option to learn about applicable keys

Misinterpreted values

- Each key's value is interpreted differently. It is important to understand the range of allowed values that a key may accept.
 Integers are typically allowable for keys expecting floating point values.
- The units used are usually SI units, but care must be taken to provide some of the keys with the correct value. There are in particular many different ways how times are specified for different keys (seconds, minutes, hours, 24hour formats, and more)

TRANSIMS Training Course at TRACC

Typical Problems

Verification of Values

 The TRANSIMS executables report the values provided in control files in their log file (".prn" by default). The names are not intuitively connected with the control keys and may use different units than the ones used in the control file.

Default values

 It is important to understand the defaults chosen for certain values if they are not specified in the control file. The use of certain keys turns defaults for other keys on, which may then be overwritten by specification in the control file.

Log Files

- The invocation of any TRANSIMS tool will write a log file
- The log file is written by default into the same directory where the corresponding control file is located
- The file name is derived from the control file name with the new extension ".prn"
- The log file name can be specified through the first control key in the control file to choose a different name:
 - REPORT_FILE ...\log\Router.log
- When running in partition mode, the log file will be named according to the partition number, e.g. "Router_3.prn"
- This convention failed until recently if the "REPORT_FILE" key was specified. In this case, all partitions used the same specified log file name. This has been fixed in the latest versions of the sofwtare.
- These log files can be opened in "append" mode by specifying the "REPORT_FLAG" key.

Network File Specifications and the Project Directory

Each network table must be specified as file

- A common directory for network files can be defined using the "NET_DIRECTORY" key
- A common project directory can be specified in some tools using the "PROJECT_DIRECTORY" key. This is prepended to all non-network file specifications.
- All directory and file name logic and concatenation is done using simple string operations and is not "path-logic" aware. If not used with care, complex directory and file names may lead to invalid paths.

Arrays of Control Keys and Value Lists

Some control keys are expected to be specified as array elements

- The syntax is somewhat unusual and is expressed using underscore characters for historical reasons:
 - Example: OUTPUT_SUMMARY_FILE_1 LinkDelay
- The example above indicates the first output summary file name
- Up to 8 dimensions are theoretically allowed, but a maximum of three is used.
- Some keys expect a comma or otherwise separated list of values, e.g.
 - Example: ROUTE_SELECTED_MODES 1,2,3,4,5,6,7,8,9

TRANSIMS Training Course at TRACC

A Sample Control File for the Router

■ TITLE	Mode Router Test
# Network Files#	
NET_DIRECTORY	/u1/projects/mpo5/network
NET_SIZE_TABLE	Size
NET_NODE_TABLE	Node
NET_LINK_TABLE	Link
NET_LANE_CONNECTIVITY_TABL	E Lane_Connectivity
NET_PARKING_TABLE	Parking
NET_ACTIVITY_LOCATION_TABLE Activity_Location	
NET_PROCESS_LINK_TABLE	Process_Link
NET_TRANSIT_STOP_TABLE	Transit_Stop
NET_TRANSIT_FARE_TABLE	Transit_Fare
NET_TRANSIT_ROUTE_TABLE	Transit_Route
NET_TRANSIT_SCHEDULE_TABLE	Transit_Schedule
# Input Files#	
LINK_DELAY_FILE	/u1/projects/mpo5/msim/LinkDelay.90.tim
HOUSEHOLD_LIST	/u1/projects/mpo5/population/hhold_list.100
■ VEHICLE_FILE	/u1/projects/mpo5/vehicle/Total_Vehicle
ACTIVITY_FILE	/u1/projects/mpo5/activity/Total_Activity

A Sample Control File for the Router

/u1/projects/mpo:
/u1/projects/mpo:
YES
1,2,3,4,5,6,7,8,9
3
YES
NO
20
0
1.0
4.0
20.0
15.0
20.0
10.0
0.0

/u1/projects/mpo5/plans/Total_Plans.100 /u1/projects/mpo5/output/Problems.100

A Sample Control File for the Router

COST VALUE 144.0 #---- \$5/hour of walk time ----TRANSFER PENALTY 0.0 RAIL BIAS FACTOR 1.0 #---- Constraints -----# MAX WALK DISTANCE 2000 MAX BICYCLE DISTANCE 10000 MAX WAIT TIME 60 MAX NUMBER OF TRANSFERS 5 MAX PARK RIDE PERCENTAGE 50 MAX CIRCUITY RATIO 2.0MIN CIRCUITY DISTANCE 2000 MAX CIRCUITY DISTANCE 20000 MAX ROUTING ERRORS 100000 MAX LINK DELAY ERRORS 100000 ■ #----- V/C Controls ----# LINK DELAY UPDATE RATE 0 **EQUATION PARAMETERS 1** BPR, 0.15, 4.0, 0.75

Credits and Acknowledgements

- GIS visualization materials were mostly developed at Argonne based on the TRANSIMS tools developed by AECOM for USDOT
- Chicago road and transit network data used in some of the examples was provided by the Chicago Metropolitan Agency for Planning
- USDOT provided the funding for the development of these training materials
- USDOT provided the funding for the TRACC computing center and the resources necessary to perform these training session

