Trails and Tribulations of High Performance Computing

Mr. David B. Roden, Senior Consulting Manager **AECOM**

April 29, 2012

0

Transportation Modeling

- Transportation modelers are charged with preparing credible forecasts of:
 - The impacts and benefits of proposed highway, transit, pedestrian, and bicycle improvements
 - Mobile source emissions for conformity analysis and for quantifying greenhouse gases (GHG), energy consumption, and particulates
 - The impacts of policy decisions and pricing or operational strategies designed to influence or manage travel demand, system performance, land-use development, special events, and economic or financial viability

Advanced Practice Modeling

Analysis Requirements

- Finer resolution of space and time dimensions
 - Network-based locations; I5 minutes or less
- Traveler decisions based on household activities
 - Coordinated person travel for one or more days
- The operations of specific streets and facilities
 - Time dependent networks with dynamic operations
- Regional simulation of individual vehicles and persons to evaluate system performance
 - Detailed forecasts of speeds, queues, flows, riders, etc.
 - By time of day, vehicle/user type, lane, train, etc.

The Computational Challenge

- The generally "acceptable" computer processing time for traditional TDF models is ~24 hours
 - Large regions must trade-off model detail and complexity against computer hardware/software costs and complexity OR do most regional modeling in-house or through a service center
- Advanced practice models are significantly more complex and computationally demanding
 - High performance computing is required for "feasible" processing times
 - Most MPOs won't accept run times over 48-60 hours

Case Studies

- Computational solutions and challenges for large traditional TDF models
 - MWCOG / WMATA
- Advanced demand models integrated with traditional network models
 - DRCOG / RTD
- Advanced demand models integrated with regional simulation models
 - SHRP2-CI0 Jacksonville

MWCOG / WMATA – DC/VA/MD

- MWCOG version 2.3 model
 - Traditional TDF model using Cube software
 - Expanded zone structure to 3,722
 - 25 million person trips, I.6 million transit trips
 - New mode choice models use 22 transit paths
 - Assigns 4 periods, 6 user classes, to 10⁻⁴ or better
 - 5 global speed feedback loops
- WMATA post processing model
 - Models each trip purpose by time of day
 - Park-&-ride capacity constraints

Model Run Times

- Tested several options to gage run times
 - Congestion level (year), assignment algorithm, and distributed processing through Cube Cluster
 - Most regional agencies limited to 4 core computers

Year	Algorithm	Cores	Hours	Days
2007	Frank-Wolfe	I	95	4.0
2040	Frank-Wolfe	I.	109	4.6
2007	Conjugate FW	I	77	3.2
2007	Bi-conjugate FW	I.	75	3.1
2007	Conjugate FW	4	37	1.5
2007	Bi-conjugate FW	4	33	1.4
2040	Bi-conjugate FW	4	48	2.0

Effect of Cube Cluster on Results

 Parallel assignments generated smallVMT differences; some significant volume differences; and illogical convergence results

"Standardize" to 4 core computing as a result

Year	Algorithm	Cores	VMT	% Diff
2007	Conjugate FW	I	156,698,908	
2007	Conjugate FW	4	156,653,683	-0.03%
2007	Bi-conjugate FW	I	156,697,741	
2007	Bi-conjugate FW	4	156,674,456	-0.01%

Daily Volume Different by > 20%

Assignment Convergence Problem

Performance Improvement Task

Time Savings from Parallelization

- Highway and Transit Skims
 - Process time periods together
- Trip Distribution
 - Process trip purposes together
- Mode Choice
 - Process trip purposes together
- Highway/Transit Assignment
 - Process time periods together
 - Combine non-HOV and HOV
- ~40% savings for all steps

Relaxing the 4 Core Standard

- Parallelizing the WMATA post-processor
 - Using a 64 core server
- Implemented outside of Cube Cluster

Process	Steps	Sequential	Parallel	
Access Links	4 steps	35 minutes	2 minutes	
Path Building	22 paths	66 minutes	3 minutes	
Transit Fares	22 updates	60 minutes	3 minutes	
Mode Choice	6 models	60 minutes	10 minutes	
Assignment	22 tables	66 minutes	3 minutes	
Total		227 minutes	21 minutes	

Lessons and Findings

- Significant computational saving can be achieve by simple parallel processing
 - The basic concept and processing mechanism is not well understood by traditional TDF modelers
 - Highway assignment is still the major bottleneck
- Changing the computing configuration should not change the model results
 - Single CPU, multi-threaded or computer cluster

DRCOG / RTD – Denver

- DRCOG developed tour-based FOCUS model
 - TransCAD 5.0, C# and SQL Server
 - Windows Enterprise Server, 32 CPUs, 64GB memory
 - 2,832 zones and activity points
 - 8 modes, 6 tour purposes DaySim family (CS)
 - I0 highway time periods, 4 transit time periods
 - 3 feedback loops \rightarrow 60 hour runs
 - Includes simplifying compromises to reduce run times
- RTD still uses older trip-based COMPASS model for FTA New Starts work

Basic Modeling Steps

Zone Points

Model Migration Plans and Issues

- Seeking FTA acceptance for New Starts work
 - How / where to freeze the "trip tables" for SUMMIT
 - Tour Mode Choice appears to be the best option
 - Improve model consistency throughout the process
 - Remove simplifying compromises in transit models
- Hardware/software distribution issues
 - Expensive purchase ~\$35,000 hardware/software
 - Hard to install and operate locked server room
- Address run time bottlenecks
 - Current process is only using about 10% of CPUs

Optimize Database Interface

- Standard database software is not well suited to transportation applications
 - Designed for fast queries and interactive editing
 - Updating all data records by sequential or multithreaded writes is expensive
 - Record locks and index/relationship maintenance is time consuming
 - Faster to re-create the database using a bulk load and relaxed relationship checks
 - Create a "trusted" partnership between the transportation models and the database software
 - Update indices and relationships "offline"

Park-&-Ride Partially Implemented

- Only Tour Mode Choice
 - No intermediate stops or trip mode choice \rightarrow P-A loading
 - Impedance based on 2*outbound path
- Not modeled like other modes
 - TransCAD path building limitations
- Suggested Improvements
 - Build return trip skims through the outbound parking lot
 - Park-n-ride (O-P-D) + walk-transit (D-P) + drive (P-O)
 - Use the walk-transit and drive skims from the return trip time period
 - For example: AM outbound \rightarrow PM return
 - Assign in O-D format like other modes

TransCAD Performance Issues

- Reading O→D and D→O matrix cells from 100+ tables is prohibitive
 - Transpose $D \rightarrow O$ and attach to $O \rightarrow D$ rows
 - AM depart AM, MD, PM, EL return
- Implementation options
 - GISDK with cell reads/writes \rightarrow 30 hours
 - GISDK with vector reads/writes \rightarrow 3+ hours
 - Custom software using CaliperMTX.dll \rightarrow 8 minutes
 - Read tables into memory, merge, and write
- Streamline other model components

22

Lessons and Findings

- Databases are nice for analyzing results, but need to be optimized for in-line modeling
 - Store data in memory or flat files and do bulk loads to the database at the end of the process or off-line
- "Standard" GISDK interfaces are not always the most efficient approach to TransCAD models
 - Manipulate files for processing efficiency
 - If you have memory, use it

SHRP2-CI0 – Jacksonville

- DaySim tour-based demand model
 - Parcel-based, 30 minutes activity schedules
 - 22 time periods (30 mins. in peaks) by 1335 zone skims
 - Outputs person activities assigned to one minute schedules and TRANSIMS activity locations

• TRANSIMS regional simulations

- Dynamic user-equilibrium simulation
 - One second time steps for 27 hour day
 - Trip gap and link gap convergence criteria
- Generates zone-to-zone skims using 5 minute increments of link and turning movement delays

Processing Time

- TRANSIMS (v4.0) Router Microsimulator
 - Typically run on the TRACC Linux cluster using parallel processing of single thread executables
 - 16 or more plan partitions for Router and Plan processing
 - Single CPU for PlanSum and Microsimulator
 - Each iteration takes ~3.5 hours
 - Network stabilizes in about 20 iterations ~3 days
 - RSG gap criteria requires ~60 iterations ~9 days
 - RSG does 4 global iterations ~36 days
- Upgrade to TRANSIMS (v5.0) for MPI and multi-threaded software performance

TRACC Computer Cluster

AECOM

Router Multi-Threaded Design

AECOM

Router MPI Design

28

Router Large Server Design

Integrated Computations

- File input/output and data manipulation is a huge component of run times
 - If the computer has sufficient memory and CPUs, keep data and iterations in memory
- Simulator processing and convergence
 - Time sorted, geographic partitions
 - Vary level of computational resolution by iteration
 - Time-based flows-speeds to macro, meso, micro-simulation
- Integrate Router and Simulator
 - Build paths that start at each time increment

Software Performance Lessons

- Isolate independent calculations
 - Processing threads or partitioned applications
- Preserve input/output order
 - Processing threads write to an ordered queue that an output thread uses to write to the output file
- Avoid file or data locks and input/output
 - Write to shared memory if data records are fixed and the thread has unique record ownership
 - Use private thread-based memory to hold data until a data exchange is required

31

Modeling Principals

- Changing the computing configuration should not change the model results
 - Single CPU, multi-threaded or computer cluster
- Changing the data partitioning or re-running the model should not change the model results
 - Random impacts should be consistent and reproducible
- Balance run times with computer requirements
 - Advanced models require high performance computing → application and staffing challenges

32