Incorporation of Travel Time Reliability in Integrated Demand and Network Simulation Models

Peter Vovsha, Parsons Brinckerhoff

ITM, Tampa, FL, April 28, 2012

1

SHRP 2 Projects

- C04 "Improving Our Understanding How Highway Congestion and Pricing Affect Travel Demand"
- L04 "Incorporating Reliability Performance Measures in Operations and Planning Modeling Tools"

Topics to Discuss / Concepts

- ABM-DTA integration and 2-way linkage:
 - ABM-to-DTA
 - DTA-to ABM
 - Individual schedule consolidation
 - Pre-sampling
- Incorporation of travel time reliability:
 - Perceived time by congestion levels
 - Mean-variance methods
 - Schedule delay methods
 - Temporal utility profiles

List of individual trips

Microsimulation DTA

Individual trajectories for the current list of trips LOS for the other potential trips?

ITM, Tampa, FL, April 28, 2012

Individual Schedule Consistency

8

ABM-DTA

Schedule Adjustment Prototype

Find new schedule close to previous durations and departures

 $\min \left\{ \sum_{i} \left(x_{i} \ln \frac{x_{i}}{d_{i}} + y_{i} \ln \frac{y_{i}}{\pi_{i}} \right) \right\}$ Previous
durations
Previous
departures

New

New

Changed

travel times

Daily consistency

Departure time

Solution

 $x_i = k \times d_i \times \prod_{j \ge 1} \frac{\pi_j}{y_j}$

ITM, Tampa, FL, April 28, 2012

 $\sum_{i} (x_i + t_i) = 24$

 $y_i = \sum_{j \le i} \left(x_j + t_j \right)$

Schedule Adjustment Extended

$$\begin{split} \min_{\mathbf{x}_{i},\mathbf{y}} \left\{ \left[\sum_{i=0}^{I} w_{i} \times x_{i} \times \ln\left(\frac{x_{i}}{d_{i}}\right) \right] + \left[\sum_{i=1}^{i+1} u_{i} \times y_{i} \times \ln\left(\frac{y_{i}}{\pi_{i}}\right) \right] + \left[\sum_{i=0}^{I} v_{i} \times z_{i} \times \ln\left(\frac{z_{i}}{\tau_{i}}\right) \right] \right\} \\ y_{i} &= \tau_{0} + \left(\sum_{j=0}^{i-1} x_{j} \right) + \left(\sum_{j=0}^{i-1} t_{j} \right), \quad i = 1, 2, \dots, I + 1 \\ z_{i} &= \tau_{0} + \left(\sum_{j=0}^{i-1} x_{j} \right) + \left(\sum_{j=0}^{i} t_{j} \right), \quad i = 1, 2, \dots, I \\ x_{i} > 0, \quad i = 0, 1, 2, \dots, I \\ \mathbf{x}_{i} &= d_{i} \times \left\{ \prod_{j>i} \left[\left(\frac{\pi_{j}}{y_{j}} \right)^{u_{j}} \times \left(\frac{\tau_{j}}{z_{j}} \right)^{v_{j}} \right] \right\}^{\frac{1}{W_{i}}} \end{split}$$

ITM, Tampa, FL, April 28, 2012

100 YEARS R

Weights for Schedule Adjustment

Activity type	Duration	Trip departure (to activity)	Trip arrival (at activity location)
Work (low income)	5	1	20
Work (high income)	5	1	5
School	20	1	20
Last trip to activity at home	1	1	3
Trip after work to NHB activity	1	5	1
Trip after work to NHB activity	1	10	1
NHB activity on at-work sub-tour	1	5	5
Medical	5	1	20
Escorting	1	1	20
Joint discretionary, visiting, eating out	5	5	10
Joint shopping	3	3	5
Any first activity of the day	1	5	1
Other activities	1	1	1

Pre-Sampling of Trip Destinations

- Primary destinations are pre-sampled:
 - 300 out of 30,000 for each origin and travel segment,
 - 30 out of 300 for each individual and travel segment
- Stop locations are pre-sampled:
 - 300 out of 30,000 for each OD pair and travel segment
 - 30 out of 300 for each individual and travel segment
- Importance sampling w/o replacement from expanded set of destinations 300×30,000 and 30×300 to ensure uniform unbiased samples
- Efficient accumulation of individual trajectories in microsimulation process

LOS Skims for Outer Loop

- Individual trajectories by departure time period for the same driver (personal learning experience), if not:
 - Individual trajectories by departure time period across individuals (what driver can hear from other people through social networks), if not:
 - Aggregate OD skims by departure time period (Advice from navigation device)

Mode Choice Refinement: Driver vs. Passenger for HOV

Trip Departure Time Choice Refinement (5 min resolution)

- Tour TOD choice model:
 - bi-directional and has 841 departure-arrival alternatives with 30 min resolution
 - Number of alternatives will quadruple with 15 min resolution
- Trip departure time choice model:
 - One-directional
 - 5 min resolution is feasible and results in under
 - 100 ordered alternatives
 - Multiple Discrete-Continuous approach is being tested for Phoenix ABM (ASU)

Quantification of (Un)reliability

- Systematic variation of travel time is not unreliability:
 - Season
 - Day of week (weekdays vs. weekends)
 - Hour
- Random unpredictable variation on top of it is unreliability:
 - Day-to-day
 - Special events
 - Accidents
 - Weather, etc

Four Methods

- Perceived highway time by congestion levels
- Time-distribution-based measures (Mean-Variance)
- Schedule delay cost
- Temporal profiles for activity participation

Time-Distribution-Based Measures

- (Mean-Variance) Standard Deviation (symmetric)
- (Buffer time) Difference between 80-90-95th and 50th percentile (asymmetric)
- (Risk measure) Probability of delay of certain length (asymmetric)
- (Lateness measure) Average delay (asymmetric)

Reliability Ratio (p)

U=α×Time+β×Cost+γ×Reliability

- VOT=α/β
- VOR=γ/β
- p=y/a=VOR/VOT
- It is more complicated with non-linear models:
 - VOT, VOR, and p becomes functions of time, cost, or distance
 - These variables must be fixed at certain values to calculate VOT, VOR, and p

Recommended Weights for Perceived Time

Travel time conditions	Weight	LOS	V/C
Free Flow	1.00	Α, Β	Under 0.5
Busy	1.05	С	0.5-0.7
Light Congestion	1.10	D	0.7-0.8
Heavy Congestion	1.20	E	0.8-1.0
Stop Start	1.40	F	1.0-1.2
Gridlock	1.80	F	1.2+

Schedule Delay Cost

$U = a \times T + \beta \times SDE + \gamma \times SDL + \delta \times L$

In presence of random travel times:

- f(T) travel time distribution
- E(U) expected utility dependent on f(T) and departure time/PAT
- Improvement of reliability in terms of f(T) can be evaluated in terms of E(U)
- Considerable body of literature:
 - SP estimates: γ≥α

Summary of Defaults for ρ

Population segment	Travel segment	Perceived congested time vs. free-flow	STD vs. mean time	Buffer 90 th -50 th vs. median time	Lateness against PAT vs. mean time
High income (60K+)	To work	2.0	0.8	1.0	3.0
	From work	1.5	0.6	0.7	2.0
	Non-work	1.2	0.4	0.5	1.8
Low income (U60K)	To work	2.5	1.0	1.2	6.0
	From work	1.2	0.3	0.4	1.7
	Non-work	1.1	0.2	0.2	1.5

Temporal Utility Profile for Activity Participation

Temporal Utility Profile for Activity Participation

ITM, Tampa, FL, April 28, 2012

Reliability in Network Simulations

- Challenges:
 - Incorporate reliability in route choice
 - Generate OD reliability measures (skims)
- Methods:
 - Analytical (single run)
 - Simulation (multiple runs)

Traffic Physics at Link Level

- Volume-Delay-Reliability Function (VDRF):
 - Average time t_a=f(v_a)
 - STD (or other Reliability measure):
 σ_a=g(t_a)=g[f(v_a)] or σ_a=h(v_a)
- Growing number of VDRF estimated:
 - $\sigma_a = g(t_a) \text{linear}$, slightly non-linear
 - σ_a=h(v_a) highly non-linear (convex)

Link-Level Functions (L03)

ALA-580 EB, I-680 to I-205, 20.25 miles 1 0.9 **Standard Deviation (Minutes Per Mile)** 9.0 2.0 9.0 2.0 9.0 3.0 9.0 3.0 9.0 4.0 $y = 0.5549 \ln(x) + 0.0893$ $R^2 = 0.372$ 0.1 0 1.6 2.2 0.8 1.2 1.4 1.8 2 1 Mean of Median Minutes Per Mile 100 YEARS ®

29

2 Implementation Frameworks for Mean-Variance Method

Single-run framework:

- One demand scenario
- One network simulation
- Travel time variation derived from a single equilibrium state (implicitly)

Multiple-run framework:

- One or several demand scenarios
- Several network simulations
- Travel time variation modeled explicitly

Single-Run Framework

- Demand model (C04):
 - Adding variance or standard deviation as LOS variable along with mean travel time and cost to mode choice and other travel choices
- Network Simulation Model (L04):
 - Adding variance or STD to route generalized cost along with mean travel time and cost
 - Generation of route variance or standard deviation skims for demand model

STD of Travel Time / Mile as Function of Mean Travel Time / Mile (Seattle, GPS Traffic Choices Study, 2008)

(a) O-D Level; (b) Path Level; (c) Link Level

Construction of OD Trip Reliability Measures

- Link-level function does not solve the problem:
 - STD and buffer time measures are not additive
 - Variance is additive if link travel times are independent (not in general case)

Route-level and OD Reliability Measures:

- Robust statistical relationships between mean travel time and STD (path-based assignment)
- Scaling procedures for link-level STD (linkbased assignment)

Example of Scaling Procedures to Construct Route STD

- For elemental unit (mile):
 - σ=k×t
 - k=coefficient of variation
- For entire OD route:
 - σ=k×t×(d)^{-µ}
 - *d*=distance
 - (independence) $-0.5 \le -\mu \le 0$ (perfect correlation)

Self-Calibration of μ in Link-Based Assignment

- For each OD pair based on the previous iterations:
 - $(d_{OD})^{-\mu(OD)} = \sigma_{OD}/(\Sigma_a \sigma_a) = \eta_{OD}$
- Assume link generalized cost function:
 - $\mathbf{c}_{a} = \mathbf{t}_{a}(\mathbf{v}_{a}) + \rho \times \sigma_{a}[\mathbf{t}_{a}(\mathbf{v}_{a})]$
- Scale reliability ratio for next iteration:

 $\rho_{OD} = \rho \times \eta_{OD}$

Incorporation of Schedule Delay Cost

100 YEARS R 2nd approach: schedule delay cost calculation in network model

approach: schedule delay cost calculation in demand model

Multiple-Run Framework

Equilibrium Assignment with Random Demand and Reliability

- Source of travel time variation is variable demand by scenarios D(s)
- Link travel time on given day is deterministic function c(v)
- Travelers do not know demand and link travel times on given day; they only know link and route mean and variance
- Travelers chose routes based on the mean-variance generalized cost function; probabilities are the same across days

Equilibrium Assignment with Random Demand and Reliability

Conclusions

- Methods to integrate microsimulation demand and network models:
 - Intermediate (temporal) equilibration for individual schedule consistency
 - Pre-sampling of locations to accumulate individual trajectories
- Methods to incorporate travel time reliability:
 - Perceived highway time by congestion levels easy but just a surrogate
 - Mean-variance main method substantiated in C04 and L04
 - Schedule delay cost & temporal activity profiles more advanced methods that need further research and improved data
- Operational models / single-run framework:
 - Demand models include STD in generalized cost
 - Construction of STD measures at OD-route level to feed into demand model (robust stats or scaling)
 - Incorporation of reliability in route choice in (efficient) traffic assignment equilibrium (path-based or link-based)
- Operational models / multiple-run framework:
 - More promising and holistic way but more complicated
 - Ongoing L04 research (Scenario Manager)

