IRA A. FULTON SCHOOL OF ENGINEERING Leading engineering discovery and innovative education for global impact on quality of life.

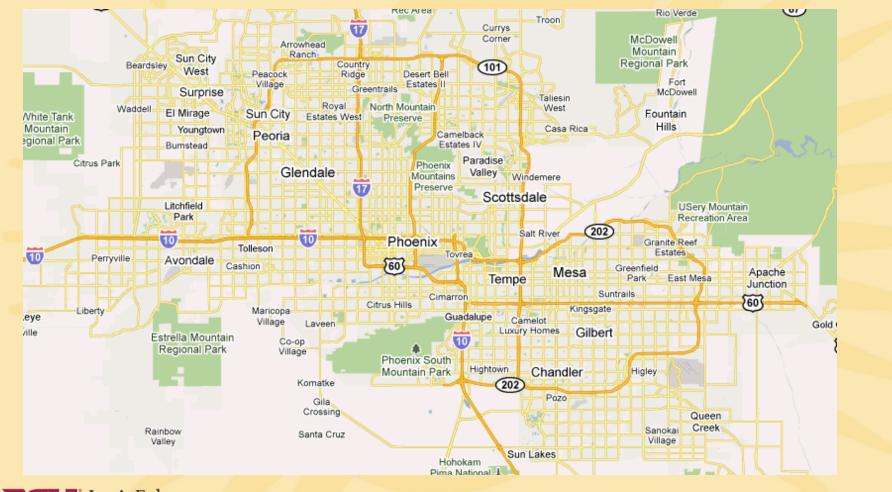
An Application of TRANSIMS to the Analysis of Multimodal Corridors in the Greater Phoenix Metropolitan Area

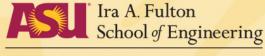
> FHWA Contract DTFH61-08-C-00018 Project Manager: Brian Gardner, FHWA

S. Ellie Ziems, Bhargava Sana, Ram Pendyala School of Sustainable Engineering and the Built Environment

TRANSIMS: Applications and Development Workshop April 8-9, 2010; Chicago, IL

Outline


- Background
- Project Objectives
- Project Approach
 - Highway Network


- Transit Network
- Light Rail Subarea
- Travel Demand Input
- Simulation
- Ongoing Work
- TRANSIMS Documentation
- Upcoming Activities

Welcome to the Greater Phoenix Area

ARIZONA STATE UNIVERSITY

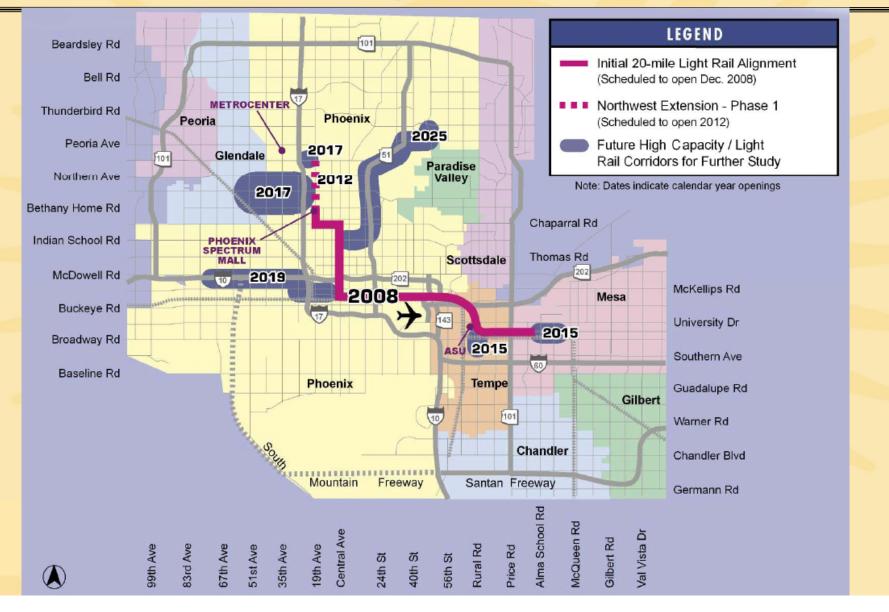
About the Phoenix Metropolitan Area

- Population of 4.28 million
 - 12th most populated metropolitan area in the country
- The City of Phoenix is the 5th largest in the U.S.
- Phoenix is the most populated capital city in the U.S.
- 8 cities in the area have 100,000+ people
 - Phoenix
 - Mesa
 - Tempe
 - Gilbert

Chandler

- Peoria
- Scottsdale
- Glendale

fulton.asu.edu


Line Rail Transit

- Light Rail service began in December 2008
- Starter line ~20 miles long
- Serves West Mesa, North Tempe, and Central Phoenix
- Additional lines being planned for the future
- Important service stops
 - Arizona State University
 - Mill Avenue Shopping district
 - Sky Harbor Airport
 - Professional Sports Facilities
 - Phoenix CBD

Plan for Future Light Rail Corridors

fulton.asu.edu

Metropolitan Planning and Modeling Challenges

- Urban sprawl
 - Residential areas sprouting along the edges
- Heavy congestion during peak hours
 - Serious environmental and quality of life implications
- Rating Corridor Performance
- Incorporating multiple modes of transportation
 - Interaction between highway and transit networks
 - Modeling the addition/presence of a new mode
- Simulation run times in large metropolitan areas are prohibitive

Specific Challenges to the Phoenix Area

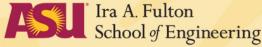
- Large regional scale
 - High run times and computational effort required
 - Provision of regional transit services
- High population of seasonal residents
- Mountain preserves and parks interspersed
- Shared borders with Native American Reservations

Project Objectives

- To implement TRANSIMS for a large scale region with a multi-modal network
- To apply TRANSIMS for operational analysis of a multimodal corridor
- To develop documentation to aid the TRANSIMS user community
- This project aims to apply TRANSIMS as a tool to overcome two challenges:
 - Microsimulation on a large scale network
 - Microsimulation in a multi-modal environment

Project Phases

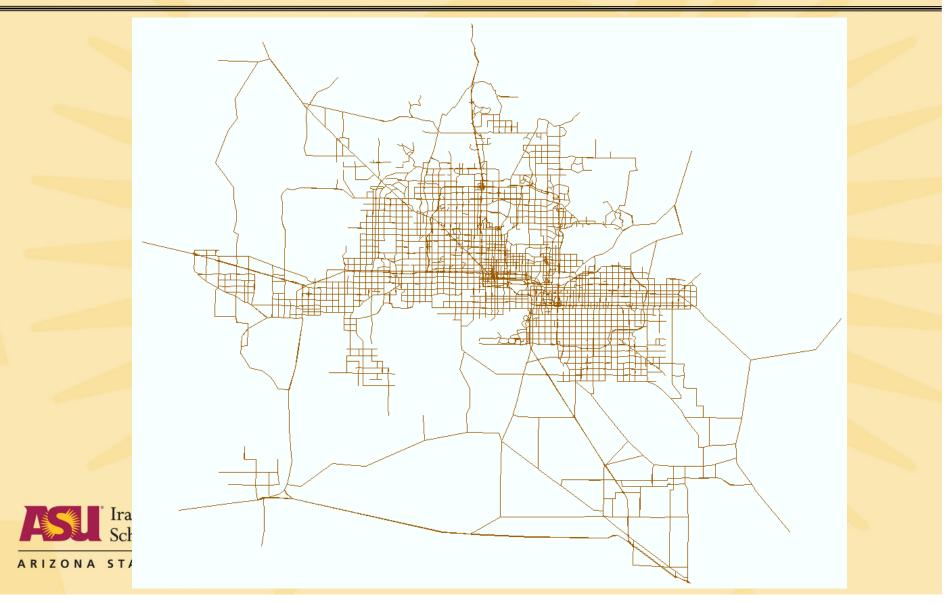
- Phase I: Network and Input Database Creation
 - Build a highway network
 - Build a transit network
 - Demand from Maricopa Association of Governments 4-step model
- Phase II: Calibration and Validation of Router/Microsimulator
 - Run Router/Microsimulator to convergence
 - Validate simulated traffic
 - Validate simulated transit ridership
- Phase III: Simulating Demand and Network Dynamics
 - Use validated network from phases I and II
 - Apply PopGen synthetic population generator
 - Apply TRANSIMS activity generator/scheduler


Ira A. Fulton School of Engineering

ARIZONA STATE UNIVERSITY

Summary of Completed Project Tasks

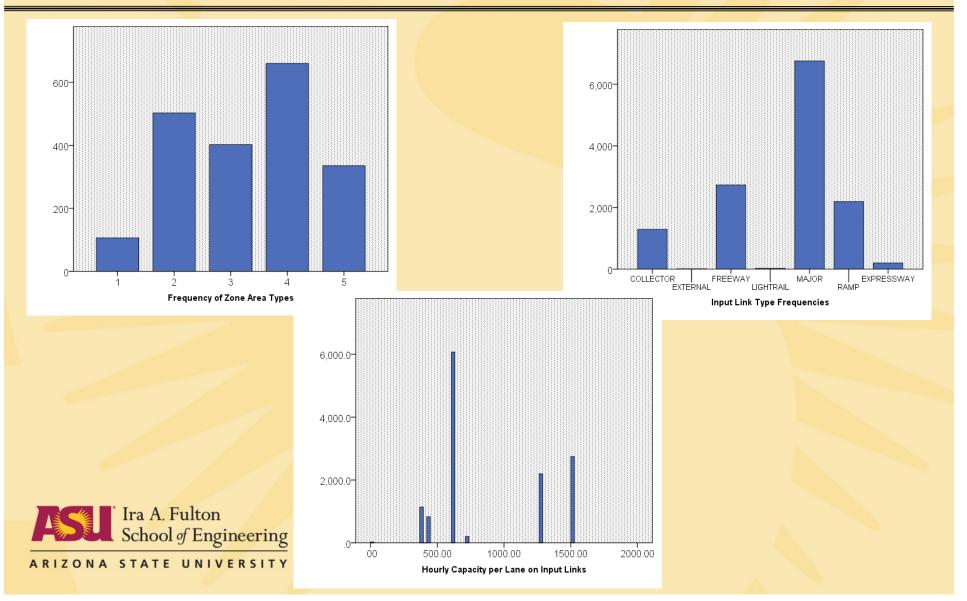
ulton.asu.edu


- Highway Network
- Transit Network
- Subarea selection and creation
- Origin-Destination matrices applied
- Creation of time-of-day distributions by purpose
- Simulation process completed
 - Router Stabilization
 - Microsimulation Stabilization
 - User Equilibrium
- Several Chapters of TRANSIMS Documentation
- Router/Microsimulator validation in progress

ARIZONA STATE UNIVERSITY

The Highway Network

Highway Network Inputs


* All Input Data provided by Maricopa Association of Governments

- 1,995 Internal TAZs
 - Area type ranging from 1-5, 5 being most rural
- 11 External TAZs
 - All area type 5
- 10,436 Nodes
 - First 11 correspond to external zone centroids
- 13,210 Links
 - 40% of these are one-way links

Input Highway Statistics

Highway Network Parameters & Results

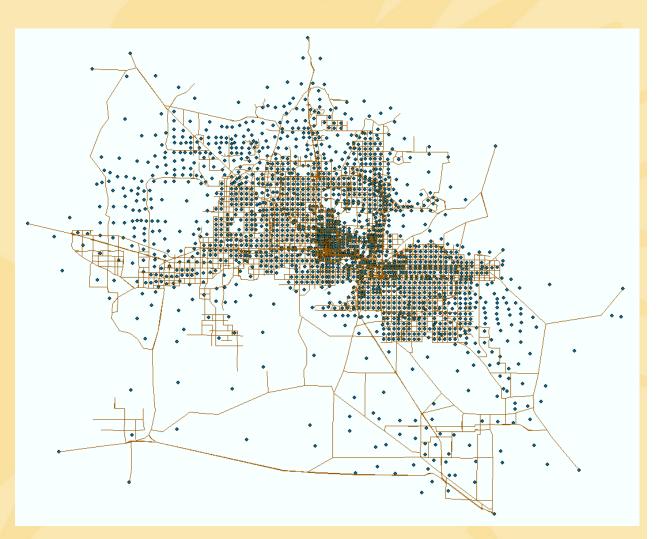
SIGNAL_WARRANT_FOR_AREA_TYPE_1	COLLECTOR, COLLECTOR
SIGNAL_WARRANT_FOR_AREA_TYPE_2	MAJOR, COLLECTOR
SIGNAL_WARRANT_FOR_AREA_TYPE_3	MAJOR, COLLECTOR
SIGNAL_WARRANT_FOR_AREA_TYPE_4	MAJOR, MAJOR
SIGNAL_WARRANT_FOR_AREA_TYPE_5	MAJOR, MAJOR
MAXIMUM_ACCESS_POINTS	3
MINIMUM_SPLIT_LENGTHS	60, 60, 60, 60,60
MINIMUM_LINK_LENGTH	10
MAXIMUM_LENGTH_TO_XY_RATIO	1.2
FIRST_EXTERNAL_ZONE_NUMBER	3000
COLLAPSE_NODES_FLAG	FALSE
ADD_UTURN_TO_DEADEND_LINKS	YES
INTERSECTION_SETBACK_DISTANCE	15

Ira A. Fulton School of Engineering Number of Input Node Records = 10436 Number of Input Link Records = 13210 Number of Input Zone Records = 2006

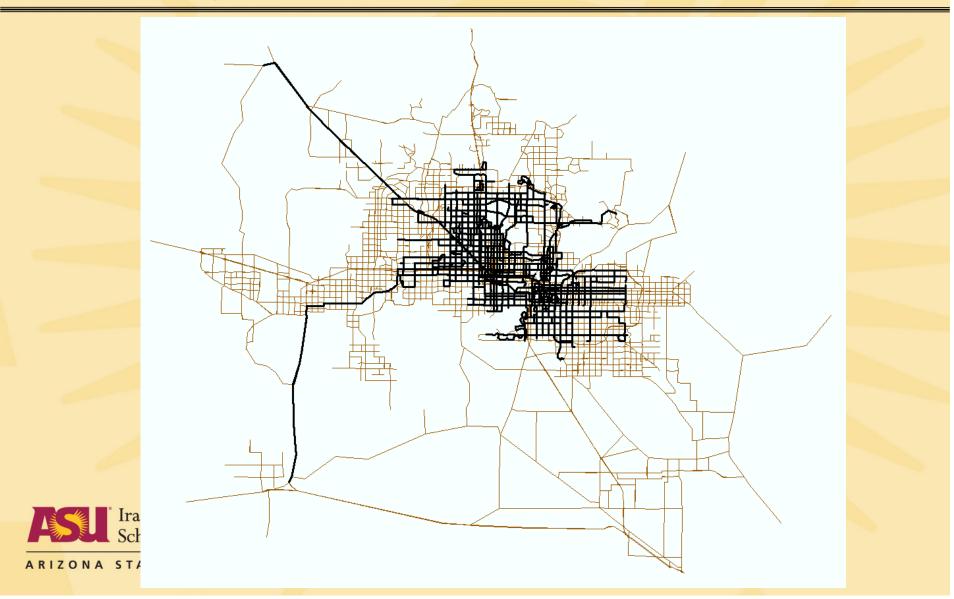
Highest Zone Number = 3010

```
Number of New Node Records = 10436
Number of New Link Records = 13210
Number of New Link Shapes = 0
Number of New Shape_Records = 0
Number of New Activity Location Records = 45443
Number of New Parking Lot Records = 45443
Number of New Process Link Records = 90886
Number of New Pocket Lane Records = 0
Number of New Lane Connectivity Records = 63194
Number of New Unsignalized Node Records = 1221
Number of New Signalized Node Records = 2081
Number of External Connections = 11
Number of Short Links Increased in Length = 169
Number of Stop Signs = 691
Number of Yield Signs = 530
Number of Demand Actuated Single Ring Signals = 2081
```

Activity Location Zone Assignments


- All Activity Locations are assigned a zone
- Zone assignments based on proximity to centroid
- Areas of Phoenix where no major roadways exist
 - Mountain preserves
 - Borders with Salt River-Pima and Gila River Reservations
- Many Phoenix-area TAZ's not allocated any Activity Locations
 - Result: failure to process trips to/from those zones
- Activity Location file was enhanced manually
 - Zone allocations of some activity locations were re-assigned
- Python Script created to automate this process

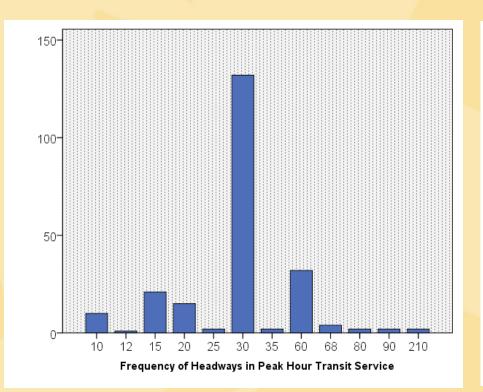
Traffic Analysis Zones

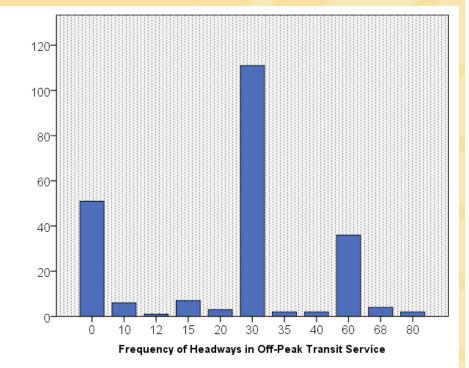

Zone assignment of activity locations based on proximity to highway link

The Regional Transit Network

Transit Network Inputs

- 225 Routes
 - Bus, Express Bus, and Light Rail
- 7 transit time periods
 - Service runs from 4:00 am to 11:00 pm
 - AM Peak from 6:00 9:00 am
 - PM Peak from 3:00 6:00 pm
- Dwell Times
 - 20 seconds for all Bus Routes
 - 10 seconds for all Express Bus and Light Rail Routes


fulton.asu.edu

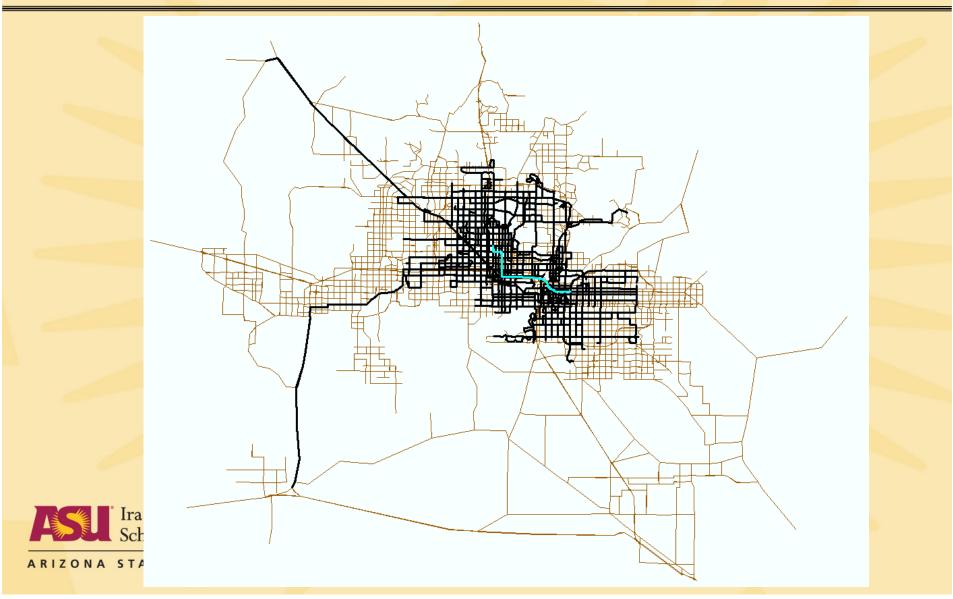

• "TIME" and "SPEED" between transit stops are calculated within TRANSIMS

Input Transit Statistics

Transit Network Parameters & Results

RANDOM_NUMBER_SEED	12345
MAX_WARNING_MESSAGES	1000000
TRANSIT_TIME_PERIODS	4:00, 6:00, 9:00, 15:00, 18:00, 23:00
TRANSIT TRAVEL TIME FACTOR	1.0, 1.1, 1.22, 1.1, 1.25, 1.1, 1.0
MINIMUM DWELL TIME	5
INTERSECTION STOP TYPE	FARSIDE

```
Number of Activity Location Records = 53641 (7518 new)
Number of Process Link Records = 107532 (15286 new)
Number of Transit Stop Records = 7643
Number of Transit Route Records = 14055
Number of Transit Schedule Records = 433085
Number of Transit Driver Records = 12426
```

U-Turns in Bus Routes and "Must Stop" Warnings

- When bus reaches its last stop, turns around to continue in opposite direction
 - Result: Route Node file contains the same node number twice in succession
 - Error Returned: No Lane Connectivity from Node X to Node X
 - Route Node file enhanced
 - The node at the end of the line is listed only once
- Bus routes that travel on freeways
 - No bus stops on freeways in Route Node file
 - Warning Returned: Route X must stop on link Y
 - Does not seem to interfere with network creation

Current 20-Mile Light Rail Line

Light Rail Specifications

• Must identify rail in the input link file

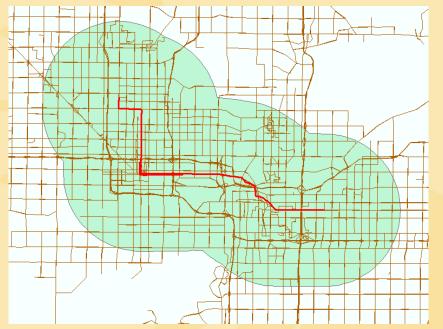
ID	ANODE	BNODE	LENGTH	TYPE	LANES_AB	FSPD_AB	CAP_AB	LANE?	5_ВА	FSPD_	BA CAP_BA USE
17414	11815	11816	802.405882507324	LIGHTRAI	IL 1	6.7056	20	1	6.7056	20	LIGHTRAIL
17415	11815	11849	810.587176734924	LIGHTRAI	IL 1	8.9408	20	1	8.9408	20	LIGHTRAIL
17416	11816	11817	801.693068458557	LIGHTRAI	IL 1	6.7056	20	1	6.7056	20	LIGHTRAIL
17417	11817	11818	808.782455497742	LIGHTRAI	IL 1	6.7056	20	1	6.7056	20	LIGHTRAIL
17418	11818	11819	808.338805252075	LIGHTRAI	IL 1	6.7056	20	1	6.7056	20	LIGHTRAIL
17419	11819	11820	809.358001762390	LIGHTRAI	[L 1	6.7056	20	1	6.7056	20	LIGHTRAIL
17420	11820	11823	811.438793357849	LIGHTRAI	[L 1	6.7056	20	1	6.7056	20	LIGHTRAIL
17421	11821	11831	938.315281517029	LIGHTRAI	IL 1	8.9408	20	1	8.9408	20	LIGHTRAIL
17422	11821	11832	797.130617294312	LIGHTRAI	IL 1	8.9408	20	1	8.9408	20	LIGHTRAIL
17423	11822	11851	2447.16535450745	LIGHTRAI	IL 1	8.9408	20	1	8.9408	20	LIGHTRAIL
17424	11822	11854	3298.34091714478	LIGHTRAI	IL 1	8.9408	20	1	8.9408	20	LIGHTRAIL
17425	11823	11852	861.457217033386	LIGHTRAI	IL 1	6.7056	20	1	6.7056	20	LIGHTRAIL
17426	11824	11825	320.414399385452	LIGHTRAI	IL 1	6.7056	20	1	6.7056	20	LIGHTRAIL

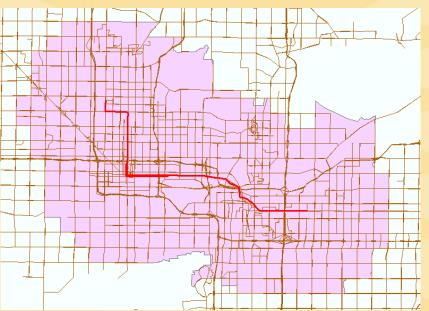
• Must identify rail in the input route header file

ROUTE	NAME	MODE HEADWA	AΥ_1	HEADWAY_2	HEADWAY_3	HEADWAY_4	HEADWAY_5	HEADWAY_6	HEADWAY_7
224	LRRedE	LIGHTRAIL	0	10	10	10	10	10	0
225	LRRedW	LIGHTRAIL	0	10	10	10	10	10	0

Light Rail Subarea Creation

- The MAG region is a very large scale area
 - Microsimulation best done for the specific area of interest, i.e., the Light Rail Corridor

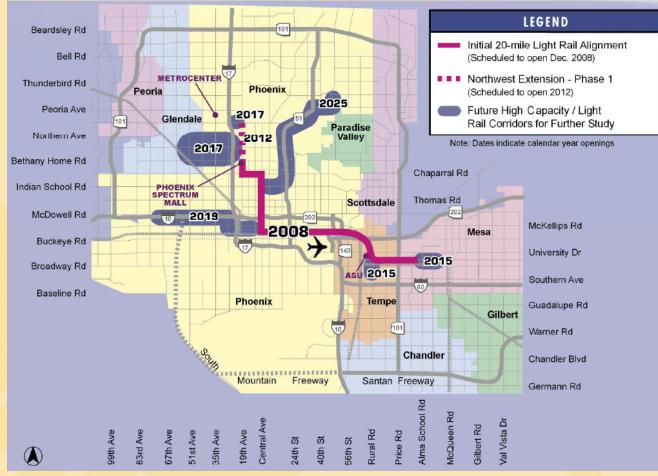

- A 5-mile buffer deemed appropriate to capture the market of the Light Rail line
- Subarea creation process:
 - Create a 5-mile buffer around the existing 20-mile Light Rail Line and its planned extensions
 - Expand the buffer to include the extents of any TAZs that lie partially within the buffer
 - This step was done to avoid trip assignment issues involving zones only
 partially in the subarea



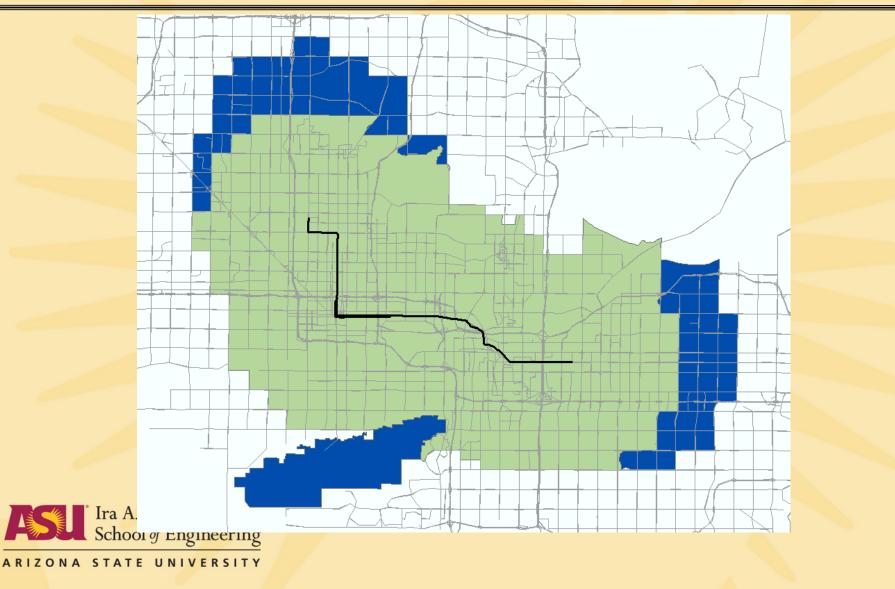
Example of Expanding the Buffer

5-mile Buffer

Subarea



Future Planned Extensions


Northwest Extension and Mesa Extension are being considered

Light Rail Buffer: Existing and Future

Origin-Destination Matrices

- O-D matrices provided by MAG
 - 24 hr Drive Alone
 - 24 hr HOV
 - Local Bus Peak & Off Peak
 - Express/Rapid Bus Peak & Off Peak
 - Light Rail Peak & Off Peak
 - 24 hr Light, Medium, and Heavy Truck
- Purpose distributions created from MAG-provided data

fulton.asu.edu

- ASU HBO
- HBU NHW
- HBW NHO

Note: Express/Rapid Bus only included HBW trips

Ira A. Fulton School of Engineering

ARIZONA STATE UNIVERSITY

Origin-Destination Matrices

- Result: 26 O-D Matrices entered into TRANSIMS
 - Each has specific mode and purpose
- Matrices are zone-to-zone trip tables
- TRANSIMS does not accept fractional trips
 - Bucket Rounding was applied to each matrix to avoid loss of trips

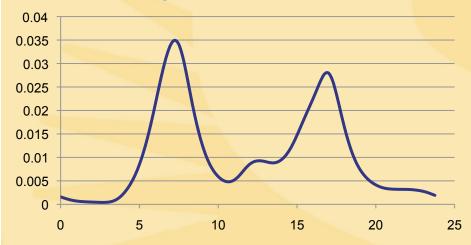
- Results of Convert Trips
 - 15,092,164 Trips
 - 14,910,781 Vehicles
- Convert Trips Run Time = 18 minutes

Time-of-Day Distributions

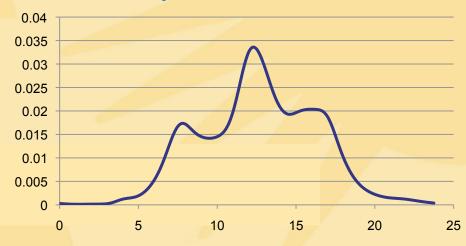
- Time-of-day distributions created from NHTS 2009 Data
- Distributions by purpose
 - NHTS trips were categorized to match MAG model trip purpose labels

ulton.asu.edu

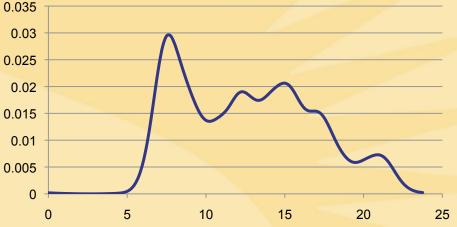
- One time-of-day distribution specifically for truck trips
- Smoothing time distributions:

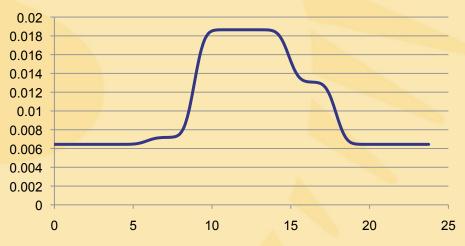

SMOOTH_FIELD_NUMBER3SMOOTH_GROUP_SIZE3PERCENT_MOVED_FORWARD20PERCENT_MOVED_BACKWARD20NUMBER_OF_ITERATIONS10CIRCULAR_GROUP_FLAGTRUE

Ira A. Fulton School of Engineering


ARIZONA STATE UNIVERSITY

Smoothed Time Distributions

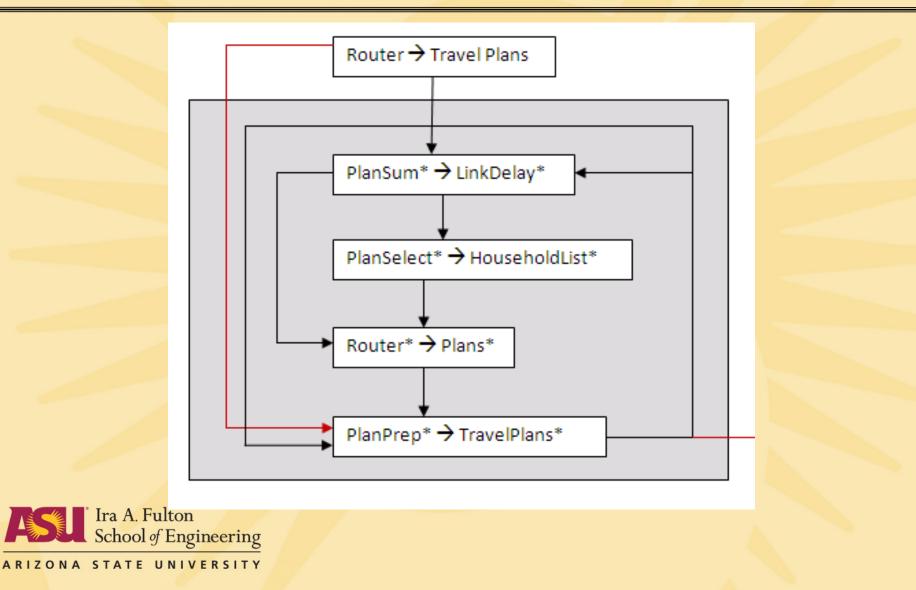

HBW Purpose Time Distribution


NHW Purpose Time Distribution

ASU Purpose Time Distribution

Time Distribution for Trucks

Simulation Process


ROUTER STABILIZATION Router → Travel Plans MICROSIMULATOR STABILIZER SubareaPlans* → SubareaPlans* PlanSum^{*} → LinkDelay^{*} Microsimulator* → LinkDelay* PlanSelect* → HouseholdList* PlanSelect* → HouseholdList* Router* → Plans* Router* → Plans* PlanPrep* → TravelPlans* PlanPrep* → TravelPlans* USEREQUILIBRIUM PlanSum^{*} → LinkDelay^{*} Router* → Plans* SubareaPlans* → SubareaPlans* PlanCompare^{*} → SelectedPlans^{*} Microsimulator* → SubareaLinkDelay* PlanPrep* → TravelPlans*

LinkDelay* → TotalLinkDelay*

Trip File

Router Stabilization Process

fulton.asu.edu

Router Stabilization

- 15 iterations of the process are run
 - 1st Router Run: About 1,808,000 Problems
 - Problems are eliminated by 15th iteration
- Majority of Router Problems are "Time Schedule" Problems
- Initial Router Run Time = 12 Hours (single core Dell Inspiron D630 laptop)
- Entire Router Stabilization process run time = 20:55:38

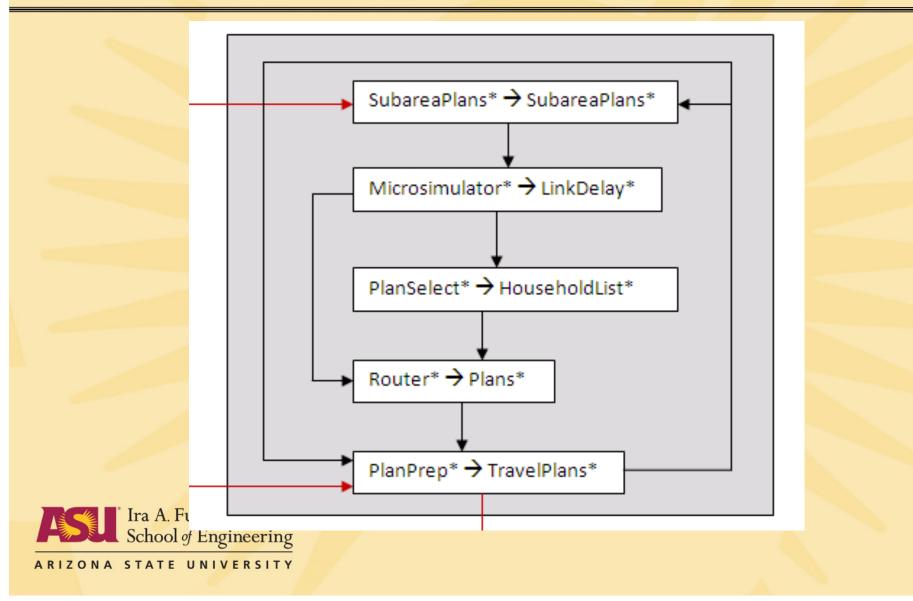
1 1

Router Stabilization Parameters

• Router

NODE_LIST_PATHS	FALSE								
END_TIME_CONSTRAINT	5								
PERCENT_RANDOM_IMPEDANCE	20								
RANDOM_NUMBER_SEED	1234								
WALK_SPEED	2								
BICYCLE_SPEED	10								
FIRST_WAIT_VALUE	15								
TRANSFER_WAIT_VALUE	20								
VEHICLE_TIME_VALUE	10								
U_TURN_PENALTY	100								
TRANSFER_PENALTY	200								
RAIL_BIAS_FACTOR	0.8								
MAX_WALK_DISTANCE	1500								
MAX_BICYCLE_DISTANCE	10000								
MAX_WAIT_TIME	60								
MIN_WAIT_TIME	3								
MAX_NUMBER_OF_TRANSFERS	4								
MAX_CIRCUITY_RATIO	5								
MAX_ROUTING_PROBLEMS	10000000								
EQUATION_PARAMETERS_1	BPR, 0.25, 4,								
EQUATION_PARAMETERS_5	BPR, 0.25, 2,								

ASU


Ira A. Fulton School of Engineering

ARIZONA STATE UNIVERSITY

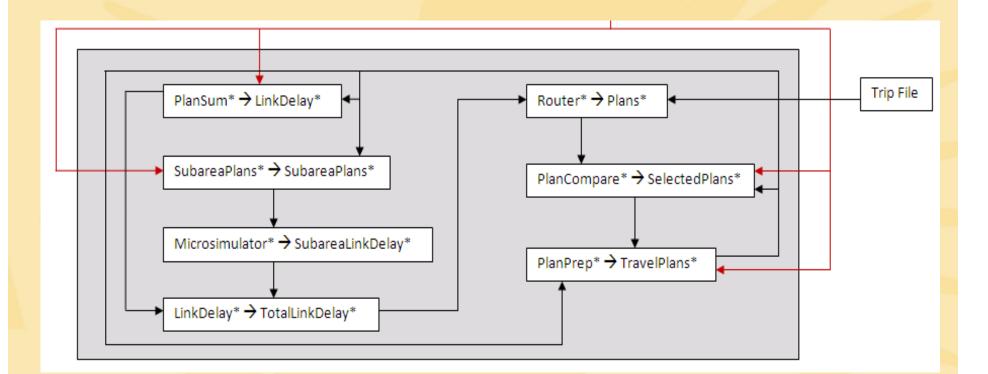
• Plan Select

PERCENT_TIME_DIFFERENCE	5
MINIMUM_TIME_DIFFERENCE	2
MAXIMUM_TIME_DIFFERENCE	30
SELECT_TIME_PERIODS	4:0024:00
MAXIMUM_PERCENT_SELECTED	10
SELECTION_PERCENTAGE	50
RANDOM_NUMBER_SEED	1234

Microsimulation Stabilization Process

Microsimulation Stabilization

- 10 iterations of the process
- Entire Microsimulation Stabilization process run time = 6:25:04
- First Microsimulator Run returned 3,065 problems
 - Majority were departure time problems
- Subarea Plans
 - Need to ensure that the external offset length in Subarea Network is sufficient


Ira A. Fulton School of Engineering

ARIZONA STATE UNIVERSITY

Microsimulator Parameters

NODE_LIST_PATHS	FALSE
CELL_SIZE	6
TIME_STEPS_PER_SECOND	1
SIMULATION_START_TIME	0:00
SIMULATION_END_TIME	24:00
SPEED_CALCULATION_METHOD	CELL-BASED
PLAN_FOLLOWING_DISTANCE	525
LOOK AHEAD TIME FACTOR	1.0
LOOK AHEAD LANE FACTOR	4.0
LOOK AHEAD DISTANCE	260
DRIVER REACTION TIME	0.7
RANDOM NUMBER SEED	O
MINIMUM WAITING TIME	60
MAXIMUM WAITING TIME	120
MAX DEPARTURE TIME VARIANCE	60
MAX ARRIVAL TIME VARIANCE	60

User Equilibrium Process

User Equilibrium

- Process was established similar to the White House Area Transportation Study
- 10 iterations of the process
- Entire User Equilibrium process run time = 42:37:34
- LinkDelay.exe
 - Inputs are subarea link delay and average link delay from region
 - Output is a regional average link delay

fulton.asu.edu

Validation in Progress

- First validation revealed problems with the network
 - All previously listed information on simulation processes could change with new network enhancements implemented recently
- Most recent validation: traffic volumes under-estimated

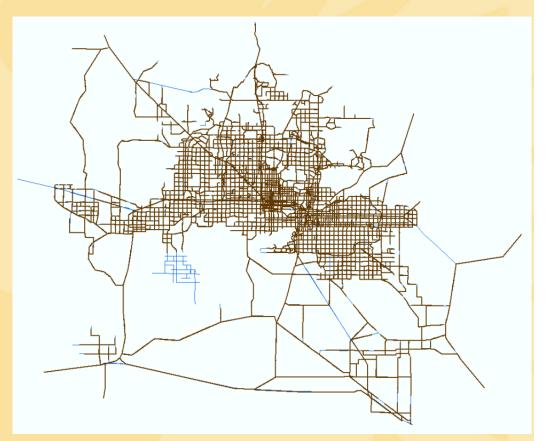
Summary Statistics by Volume Level

volume Level	Num. Obs.		ume Observed	Differe Volume	ence %	Abs.Er Avg.	ror %	std. Dev.	% RMSE	R Sq.	V/0 Avg.	с Мах.
10000 to 25000 25000 to 50000 50000 to 75000 75000 to 100000 100000 to 500000	22 13 27 9 13	331982 380954 886579 341716 912031	348195 515343 1690446 756630 1489860	-16213 -134389 -803867 -414914 -577829	-4.7 -26.1 -47.6 -54.8 -38.8	5225 16002 30323 46102 44448	33.0 40.4 48.4 54.8 38.8	4544 9053 13921 16602 23831	57.9	0.013 0.275 0.051 0.023 0.021	0.20 0.22 0.23	0.53 0.38 0.54 0.34 0.59
TOTAL	84	2853262	4800474	-1947212	-40.6	25410	44.5	20478	57.0	0.548	0.25	0.59

Summary Statistics by Facility Type

Facility Type		Vol Estimate								R Sq.	· ·	
Freeway Minor Arterial		2593830 259432		-1962964 15752		30337 4471						
TOTAL	84	2853262	4800474	-1947212	-40.6	25410	44.5	20478	57.0	0.548	0.25	0.59

Ira A. Fulton


School of Engineering

ARIZONA STATE UNIVERSITY

Validation in Progress

- Just received more accurate and complete validation file from MAG
- In the meantime, checking network connectivity and making enhancements
 - Dummy trip file from Activity Location 1 to all other Activity Locations
 - Entered into router and then Arcview Plans

TRANSIMS Documentation

• Learning phase of the project suggested need for more comprehensive documentation

- Prompted the creation of "TRANSIMS for Dummies"
 - The goal: to create a one-stop document that includes all the information user will need to know about the system in informal language
 - Will facilitate quick learning and hopefully wider use of TRANSIMS
- Eventual Goal with TRANSIMS for Dummies
 - Allow user community to access via wiki and make enhancements

Project Wiki Site

- Please visit our project Wiki site:
 - http://simtravel.wikispaces.asu.edu/TRANSIMS+Application+and +Deployment
- TRANSIMS for Dummies

http://simtravel.wikispaces.asu.edu/TRANSIMS+For+Dummies

- Weekly Progress Updates on this Project
 http://simtravel.wikispaces.asu.edu/TRANSIMS+Project+Updates
- Details on other SimTRAVEL Projects
 - SimTRAVEL: Simulator of Transport, Routes, Activities, Vehicles, Emissions, and Land

http://simtravel.wikispaces.asu.edu/

ARIZONA STATE UNIVERSITY

fulton.asu.edu

Where We Are Going...

- Large-scale multimodal network successfully created
 - Minor issues related to poor connectivity
- Ongoing validation checks
 - Router testing reveals approximately 12% of trips are experiencing problems
 - Accounting of HOV lane trips
- Phase 3 tasks underway
 - Synthetic population created using PopGen
 - NHTS2009 add-on survey data for MAG being processed
 - Plan to apply TRANSIMS Activity generator
 - Plan to use MAG mode choice model

fulton.asu.edu

Acknowledgements

- Brian Grady, Resource Systems Group, Inc.
- Terry Phemister, HDR, Inc.
- Vladimir Livshits, Sreevatsa Nippani, and Wang Zhang, Maricopa Association of Governments

