

Building Evacuation

By Reinaldo Moraga

Department of Industrial and Systems Engineering College of Engineering & Engineering Technology DeKalb, IL

Building evacuation

- Collaboration with Argonne-TRACC focused on basically two aspects:
 - Generation of inter-exit times to obtain a more accurate curve for the evacuation demand.
 - Determine the time at which a building should be evacuated.

Part A: Inter-exit times

• The idea is to fine tune the current version of TRANSIMS trip tables.

Going from WILLIS Tower to Home

VEHICLE	START	ORIGIN	ARRIVE	DESTINATION
1	4.40pm	WT	6.00pm	Home

• If an event happens at 9.00am, the starting time has to be modified according to certain evacuation demand model.

Part A: Inter-exit times (cont.)

• The idea is to create a generator of inter-exit times for a building in order to establish the starting time of evacuation trips.

Part A: Inter-exit times (cont.)

NORTHERN ILLINOIS UNIVERSITY

Major challenges:

- Data from past experiences of real world building evacuations.
- Literature does not provide this type of specific information.

Currently:

• Argonne is using Fuzzy Logic based approximations.

NORTHERN

Part A: Inter-exit times (cont.)

ILLINOIS Real Data Real Data Generator of inter-exit times Egress models (Simulation)

Depends on factors such as:

- Time response of evacuees
- Type of building
- Floor layouts
- Distance from the event
- etc.

UNIVERSITY

Part A: Methodology

- Obtain data on evacuation times by using agent-based available software such as Simulex (egress modeling) for high buildings.
- 2. Design a Monte-Carlo algorithm using the data collected in (1).
 - Based on a Non-stationary Poisson process.
- 3. Integrate the generator designed in (2) with the generation of trip tables for TRANSIMS.

Part A: Simulex

Part A: Simulex (cont.)

NORTHERN ILLINOIS UNIVERSITY

Figure 2: People reaching one of the ground exit point, people coming down the stairs, and people going to the stair exit point.

Part A: Simulex (cont.)

Figure 3: People exits from building over time (measured as a fraction of the total evacuation time, τ/T)

Part A: Non-stationary Poisson Process

- Non-stationary Poisson processes (NSPPs) can be fitted to many natural phenomena and behavioral patterns.
- The instantaneous rate function is $\lambda(\tau) \ge 0$ for all continuous times τ , and the cumulative rate function $\Lambda(\tau) = \int_0^{\tau} \lambda(s) ds$
- The number of events in the interval $[\tau_1, \tau_2]$ then follows a Poisson distribution with mean $\int_{\tau_1}^{\tau_2} \lambda(s) ds = \Lambda(\tau_2) - \Lambda(\tau_1).$

Part A: NSPP Generation

1	Define <i>nf</i> and α ;	Number of floors (<i>nf</i>) and fraction of elderly people (α)		
2	Set <i>N</i> =59 <i>nf</i> ;	Total number of people in the building		
3	<i>Ts</i> =round(17.78 <i>nf</i>); <i>Te</i> =round(32.38 <i>nf</i>);	Evacuation time for pure staff people Evacuation time for pure elderly people		
4	For $i = 1: N$, For a desired number of exit events n to be generated.			
5	u = rand(0,1);	A random number is generated from a $uniform(0,1)$.		
6	$a(i) = -\ln(u)/N;$	An inter-event time is calculated using a stationary rate 1 Poisson process standardized by <i>N</i> —the building population that needs to be evacuated.		
7	y(i) = y(i-1) + a(i);	Calculate the moment at which next evacuation event is going to occur.		
8	$s(i) = F^{-1}(y(i));$	Calculate the exit time of event <i>i</i> for staff people.		
9	$e(i) = F^{-1}(y(i));$	Calculate the exit time of event <i>i</i> for elderly people.		
10	$t(i)=(1-\alpha)s(i)Ts + \alpha e(i)Te;$	Calculate the exit time of event <i>i</i> for mixed people.		
11	End			

12 Report t

Part A: NSPP Generation

NORTHERN ILLINOIS UNIVERSITY

Figure 4: Verification of cumulative exit rate functions for 15-floor building

Comments/Future work

- Model validation with real world building evacuation scenarios represents a challenge.
- Extending the models to the evacuation of shopping centers, residential buildings and stadiums (currently master project).
- SIMULEX uses optimistic values for the configuration of agents. We are verifying with videos of people evacuating from buildings of recent earthquakes.
- Working on word of mouth modeling to see how the spread of news impact evacuation response times.