Building Evacuation

By
Reinaldo Moraga

Department of Industrial and Systems Engineering College of Engineering \& Engineering Technology DeKalb, IL

Building evacuation

illinois
UNIVERSITY

- Collaboration with Argonne-TRACC focused on basically two aspects:
- Generation of inter-exit times to obtain a more accurate curve for the evacuation demand.
- Determine the time at which a building should be evacuated.

Part A: Inter-exit times

- The idea is to fine tune the current version of TRANSIMS trip tables.
Going from WILLIS Tower to Home

VEHICLE	START	ORIGIN	ARRIVE	DESTINATION
1	4.40 pm	WT	6.00 pm	Home

- If an event happens at 9.00 am , the starting time has to be modified according to certain evacuation demand model.

Part A: Inter-exit times (cont.)

- The idea is to create a generator of inter-exit times for a building in order to establish the starting time of evacuation trips.
illinois UNIVERSITY

Part A: Inter-exit times (cont.)

Major challenges:

- Data from past experiences of real world building evacuations.
- Literature does not provide this type of specific information.

Currently:

- Argonne is using Fuzzy Logic based approximations.

Part A: Inter-exit times (cont.)

Depends on factors such as:

- Time response of evacuees
- Type of building
- Floor layouts
- Distance from the event
- etc.

Part A: Methodology

1. Obtain data on evacuation times by using agent-based available software such as Simulex (egress modeling) for high buildings.
2. Design a Monte-Carlo algorithm using the data collected in (1).

- Based on a Non-stationary Poisson process.

3. Integrate the generator designed in (2) with the generation of trip tables for TRANSIMS.

Figure 1: (a) Ground floor

(b) General floor

Part A: Simulex (cont.)

Figure 2: People reaching one of the ground exit point, people coming down the stairs, and people going to the stair exit point.

NORTHERN

Part A: Simulex (cont.)

Figure 3: People exits from building over time (measured as a fraction of the total evacuation time, τ / T)

Part A: Non-stationary Poisson Process

- Non-stationary Poisson processes (NSPPs) can be fitted to many natural phenomena and behavioral patterns.
- The instantaneous rate function is $\lambda(\tau) \geq 0$ for all continuous times τ, and the cumulative rate function $\Lambda(\tau)=\int_{0}^{\tau} \lambda(s) d s$
- The number of events in the interval $\left[\tau_{1}, \tau_{2}\right]$ then follows a Poisson distribution with mean

$$
\int_{\tau_{1}}^{\tau_{2}} \lambda(s) d s=\Lambda\left(\tau_{2}\right)-\Lambda\left(\tau_{1}\right)
$$

Part A: NSPP Generation

NORTHERN ILLINOIS UNIVERSITY

1 Define $n f$ and α;
2 Set $N=59 n f$;
$T s=$ round (17.78nf); $T e=$ round(32.38nf);

4 For $i=1: N$,
$5 u=\operatorname{rand}(0,1)$;
$6 \quad a(i)=-\ln (u) / N$;

Number of floors ($n f$) and fraction of elderly people (α) Total number of people in the building

Evacuation time for pure staff people Evacuation time for pure elderly people For a desired number of exit events n to be generated.

A random number is generated from a uniform $(0,1)$.
An inter-event time is calculated using a stationary rate 1
Poisson process standardized by N-the building population that needs to be evacuated.

Calculate the moment at which next evacuation event is going to occur.

Calculate the exit time of event i for staff people.
Calculate the exit time of event i for elderly people.
Calculate the exit time of event i for mixed people.

11 End
12 Report t

Part A: NSPP Generation

NORTHERN
illinois UNIVERSITY

Nonparametric test:

- No significant difference
- Very small MSE

Figure 4: Verification of cumulative exit rate functions for 15 -floor building

Part A: Prediction

Figure 7: People exits from a 100-floor building, assuming 30% elderly people.

Comments/Future work

- Model validation with real world building evacuation scenarios represents a challenge.
- Extending the models to the evacuation of shopping centers, residential buildings and stadiums (currently master project).
- SIMULEX uses optimistic values for the configuration of agents. We are verifying with videos of people evacuating from buildings of recent earthquakes.
- Working on word of mouth modeling to see how the spread of news impact evacuation response times.

