Travel Demand Modeling for a Small MPO Using TRANSIMS

Study Background

- The study was funded by the Federal Highway Administration (FHWA)
- The study started in November 2008 and completed on November 2009
- This study was a complimentary study to another project titled *Illinois Travel Demand Modeling Technical Support Group,* funded by the Illinois Department of Transportation through Illinois Center for Transportation, ICT.

Study Objectives

- To promote better understanding of travel behavior and transportation systems through development, calibration, validation, and analysis of a travel demand model for a small sized MPO using TRANSIMS.
- To develop methods for applying TRANSIMS modules to evaluate the transportation policies and issues related to planning agencies (especially small MPOs) as identified in SAFETEA-LU 5512.
- To extend TRANSIMS technology by identifying issues and opportunities of using TRANSIMS for a small sized MPO.

Key Parts of the Study

- Evaluating Travel Demand Modeling status in small MPOs in Illinois.
- Determining functional requirements for TRANSIMS Track 1 implementation in a small MPO.
- Data requirements and conversion steps for Track 1 implementation of TRANSIMS.
- Model calibration and validation steps.
- TRANSIMS model sensitivity analysis with highway network changes.
- Comparing Four-Step Travel Model and TRANSIMS use issues for a small MPO

TDM Status in Illinois MPOs

Functional Requirements for TRANSIMS Implementation

Functional Requirements for TRANSIMS Implementation

Input Data	Purpose	Source
Roadway (Node, Link)	Network Preparation &	MPO (Transportation Planning/GIS Dept.)
Traffic Analysis Zone	Editing	MPO (Transportation Planning/GIS Dept.)
Trip Table	Route Planning	MPO (Transportation Planning Dept.)
Vehicle Type	Microsimulation	MPO (Transportation Planning Dept.)
Traffic and Transit Volumes	Calibration & Validation	MPO, Cities, Transit Authorities

Trip Table Conversion

Diurnal Distribution

Commission

Router, Microsimulator, and Convergence Iterations

□ Testing the following model components:

- Network
- Socio-economic data
- Trip Generation
- Trip Distribution
- Traffic Assignment

A network-wide validation comparison to field counts utilizing Validate utility program

Using Screenlines

Critical links comparison using major and minor arterials

Facility Type	FHWA Guideline ³ (+/-)	CUUATS 4- Step Model	CUUATS TRANSIMS Model
Freeway	7%	-3.10%	2.80%
Major Arterial	10%	1.60%	-1.20%
Minor Arterial	15%	-13.80%	8.40%
Collector	25%	-42.60%	4.30%

Measure	FHWA Guideline	CUUATS 4-Step Model	CUUATS TRANSIMS Model
Correlation Coefficient	0.88	0.88	0.901
Percent Diff Reg. Wide	5%	12%	4.3%

Model Sensitivity Analysis

Model Sensitivity Analysis

	24-Hour Volume		
Roadway	Observed (Year)	Estimated (TRANSIMS Output)	
I-57 South of Curtis Road	28,980 (2005)	29,586	
I-57 North of Curtis Road	28,980 (2005)	29,749	
Curtis Road to I-57 SB	650 (2009)	692	
I-57 NB to Curtis Road	750 (2009)	2,011	
I-57 SB to Curtis Road	1,370 (2009)	1,105	
Curtis Road to I-57 NB	1,375 (2009)	1,760	
Curtis Road E of I-57 Ramps	No data	2,916	
Curtis Road W of I-57 Ramps	No data	1,613	

4-Step TDM and TRANSIMS

4-Step TDM and TRANSIMS

• The cost of four-step travel model software packages is the biggest initial cost for a small sized MPO.

- Skill development for software operation (training) and maintenance costs are also significant, e.g. typical yearly maintenance fee is around \$5,000.
- TRANSIMS is available free of cost, but it requires strong GIS capabilities.
- TRANSIMS training and maintenance are also available free of cost.

Opportunities for Future Work

- Developing travel models for small sized MPOs in Illinois which do not have a travel demand model in place by considering both Track 1 implementation and integrating other Population Synthesizer and Activity Generator models blended with the Router and Microsimulator modules.
- Utilizing the TRANSIMS travel model for emergency evacuation planning for small urbanized areas.
- Addition of transit component with the current TRANSIMS based model for Champaign-Urbana Urbanized Area.

Thank You!

Questions?

