

Application of TRANSIMS for Highway Work Zones: Travel Pattern and Mobility Impacts

TRANSIMS DEPLOYMENT CASE STUDIES

APRIL 9 2010

Jun Oh & Daewoon Park Western Michigan University

Problem Statement

- Conventional travel demand forecasting models lacks in analyzing impacts of highway work zones
- Microsimulation models are capable of analyzing work zone impacts; however, they have limitations:
 - Scalability
 - Network equilibrium
- Any other way to overcome weaknesses?

Objectives

Objective

Federal Highway Administration

TRANSIMS

- to demonstrate TRANSIMS capability in analyzing network-wide impacts of lane or highway closure during highway constructions
- to compare TRANSIMS capability with existing analysis models (TransCAD & Paramics)

Proposed Case Study

- I-75/I-96 Ambassador Bridge Gateway Maintenance of Traffic
 - Maintenance of Traffic Simulation (MOTSIM) study is reexamined using TRANSIMS

Regional Travel Demand Model

SEMCOG (South East Michigan Council of Governments)

- SEMCOG Travel Model
 - 7 counties, 234 communities
 - Population: 4,938,807
 - Households: 1,926,818
 - Employment: 2,282,240
 - TransCAD

Federal Highway Administration

- 1505 zones
- Four periods
 - AM, MD, PM, OP
- Six trip purposes
 - HBW, HBSH, HBSC, HBO
 - NBHW, NHBO
- Truck data: LT, MT, HT

Highway Facility Type

Data Conversion

Approach

Federal Highway Administration

TRANSIMS

- Develop a conversion tool using GISDK in TransCAD (TransCAD2NET)
- Convert data from TransCAD to TRANSIMS

Utility Modules in TRANSIMS

- TransimsNet network data processing
- IntControl control data processing
- ConvertTrips trip data processing
- ArcNet ArcGIS shapefile processing

Trip Data Preparation

Current Data Format

Federal Highway Administration

- SEMCOG model processed vehicle trips in four time periods (AM, MD, PM, OP)
- Passenger Vehicle Types: SOV, HOV2, HOV3
- Truck Vehicle Types: LT, MT, HT
- Need to split production/attraction by trip purpose to apply diurnal distribution
- Reprocessed trip data from TransCAD

Total Vehicle Trips

Period	SOV	HOV2	HOV3+	Light	Med	Heavy	Total
				Truck	Truck	Truck	
AM	1,221,381	216,925	82,141	65,938	22,044	34,766	1,643,195
(%)	74.33%	13.20%	5.00%	4.01%	1.34%	2.12%	100.0%
MD	3,401,870	833,952	240,690	414,465	110,559	159,966	5,161,502
(%)	65.91%	16.16%	4.66%	8.03%	2.14%	3.10%	100.0%
PM	2,274,118	522,805	218,772	99,221	25,096	39,401	3,179,413
(%)	71.53%	16.44%	6.88%	3.12%	0.79%	1.24%	100.0%
OP	3,125,121	874,184	323,210	48,354	11,870	30,545	4,413,284
(%)	70.81%	19.81%	7.32%	1.10%	0.27%	0.69%	100.0%
All Day	10,022,490	2,447,866	864,813	627,978	169,569	264,678	14,397,394
(%)	69.61%	17.00%	6.01%	4.36%	1.18%	1.84%	100.0%

Trip Files

Total 42 Trip Tables

Federal Highway Administration

- Passenger Production / Attraction (2 x 6 x 3 = 36)
 - 6 trip purposes (HBW, HBSH, HBSC, HBO, NHBW, NHBO)
 - 3 modes (SOV, HOV2, HOV3)
- External trip in three modes (SOV, HOV2, HOV3)
- Truck trip (3 truck types LT, MT, HT)
- Integer Trip Values
 - Round values to the nearest integer
 - The total number of trips: 12,900,743 trips (excluding intra-zonal trips)

Prederal Highway Administration TRANSIMS Diurnal Distribution by Trip Purpose

19

Challenge in Activity Location

Problem

Federal Highway Administration

TRANSIMS

 Some zones contain no activity location or only one activity location → causes errors in ConvertTrips

Reason

- By default, the TransimsNet program assigns each activity location to the closest zone centroid.
- However, when the zone boundaries are irregular, this can frequently assign activity locations to the wrong zone number

Solution

- Develop a module to correct each activity location's zone based on zone polygon
- Identify zones with no or only one activity location

Correcting activity location data

U.S. Department of Transportation Federal Highway Administration

TRANSIMS

21

Lesson Learned

- Network conversion process is relatively straightforward, but there are some challenges.
- Need precise GIS shape data for network conversion
 - Activity locations

Federal Highway Administration

- Lane connectivity
- Regional Demand Model Data are insufficient
 - Comprehensive data inventory is necessary for advanced models - network, lane configuration, intersection control data

Hybrid network approach

- Whole network Router
- Subarea network Microsimulator

U.S. Department of Transportation Federal Highway Administration

User Equilibrium

User Equilibrium

Federal Highway Administration

- A condition where no traveler can reduce their trip travel time by changing paths
- User Equilibrium
 - Percentage of Travelers Selected
 - Relative Gap

- *TT_n* = New Travel Time for Traveler n
- BT_n = Base Travel Time for Traveler n
- *N* = the number of travelers compared

Total Computational Time: 88 hours

Output Visualization in TransCAD

Purpose

Federal Highway Administration

- To display/visualize TRANSIMS output in TransCAD
- To compare with traffic data from other sources
- Methodology
 - Import TRANSIMS output to TransCAD
 - Using TransCAD GISDK and MS Access Database

Volume Data View

Volume Bar Chart

Volume Data Comparison

Volume Comparison with Line Chart

Color Thematic Map

Scaled-symbol Thematic Map

Lessons Learned

Large scale simulation requires heavy computation, especially for the UE process

Federal Highway Administration

- Need to further investigate on UE process and develop a formalized UE process
- Visualization tools are important for model implementation and validation

Expected Outputs

- Drivers who traveled through the highways to be closed
- Alternative routes for the traffic and their changes over time (day-to-day evolution)
- Identification of problem links and corridors
- Changes in network conditions
 - New UE pattern during construction
 - Impact of short-term & long-term work zone

Changes in Volume

U.S. Department of Transportation Federal Highway Administration

TRANSIMS

Volume difference > 30% or < -30%

Day 20

U.S. Department of Transportation Federal Highway Administration

Day 5

TRANSIMS

Speed difference > 30% or < -30%

Conclusion

- There is still a question if the day-to-day approach represent actual drivers' behavior.
- TRANSIMS is able to analyzes travel pattern changes due to highway work zones
- Some challenges and future research
 - Real time rerouting via VMS
 - Incorporation of departure time choice problem

