NEXTA: Simulation Data Visualizer for TRANSIMS

NEXTA: Network EXplorer for Traffic Analysis
Sponsored by
Federal Highway Administration
Developed and Prepared by
TRANSIMS: Applications and Development Workshop
April 8-9, 2010
zhou@eng.utah.edu
Freeware can be downloaded at http://www.civil.utah.edu/~zhou/NEXTA for TRANSIMS.html

Sample Occupancy Plot

Sample Vehicle Snapshot Plot

$\$=07: 30 / 23: 20-[$ [TS5 *]

Sample Bottleneck Snapshot Plot

Sample Travel Time Contour (Accessibility) Snapshot Plot

Travel	Tine (ain)	区
	<1	
	1-2	
	2-3	
	3-4	
	4-5	
	>5	

Tutorial Outline

- Network and control data visualization
- View node and link properties, lane configuration
- Configure dynamic project menu
- Time-dependent simulation data visualization
- View cell occupancy, speed, queue length and vehicle locations, MOE profiles
- Other tools
- Find multiple paths
- Create nodes and links (in development)

Step 0：Create a Project File

－Project file（＊．tsp）is used by NEXTA to locate the folder of a TRANSIMS project

TestNet

File Edit Yiew Favorites Iools Help						
Θ Back－\bigcirc search Folders			國			
Address \square C：＇transims＇｜TestNet						
File and Folder Tasks	，	Name -		Size	Type	Date Modified
		（1）3D		File Folder		9／6／2008 11：06 PM
Make a new folder Publish this folder to the Web Share this folder	batch				File Folder	10／3／2008 9：21 PM
					File Folder	10／2／2008 5：12 PM
	Diontrol				File Folder	10／2／2008 5：12 PM
	Oinputs				File Folder	9／4／2008 2：41 PM
	Enetwork				File Folder	9／6／2008 11：13 PM
Tresults					File Folder	10／2／2008 5：12 PM
Other Places＊setup					File Folder	10／2／2008 5：08 PM
Trubnet					File Folder	9／6／2008 11：13 PM
Details シ 國testnet．tsp				0 KB	TSP File	9／13／2008 7：57 PM

Inside a *.tsp Project File

- First line should have the relative location of the microsimulation control file

Example: TestNet data set
setup
\backslash master \backslash Microsimulator.ctl

Example: Alexandria data set setup \backslash control
\backslash Microsimulatorctl

Step 1: Open a Project

If the specified microsimulation file is not found in tsp file, the user will be provided with an

Start Time:	0	∇	Hour
End Time:	24	$\boxed{ }$	Hour

 option to manually load the microsimulation control file, or use the default input file locations

File Loading Status Table

Step 1: Open a Project \rightarrow Select iteration number

Select iteration number for loading simulation results X

- A user can specify an iteration number for loading average link performance, cell occupancy and vehicle snapshot data.
- By default, NEXTA automatically identifies and loads the maximum (i.e. the last) iteration number, if multiple iterations of simulation results are available from those files stored in folder "\results".

Step 1: Open a Project \rightarrow Define Loading Time Window

Define Loading Time Window for Cell Occupancy and Vehicle Snapshot D... X

- For (memory-consuming) cell occupancy and vehicle snapshot data, a user can specify "Start Time" and "End Time" to define a data loading time window to reduce required memory for the GUI program.
- For link performance data such as density, speed and queue length, NEXTA loads 24 hours of simulation data automatically.

Input Files

- Folder Network
- Node.txt, Link.txt, Pocket_Lane.txt, Shape.txt, Zone.txt
- Signalized_Node.txt, Timing_Plan.txt, Phasing_Plan.txt
- Folder Results
- Performance.txt (density, speed, queue)
- Occupancy_Avg.txt (cell occupancy)
- Snapshot.txt (vehicle locations)

Remarks: A test data set with the above files can be downloaded at
http://www.civil.utah.edu/~zhou/TestNet.zip
A user can execute /setup/runall.bat to generate those files

First Look

View Tools

ㅎ. Distance
(4iv) Move Network
嵓 Pan
q. Zoom In

Q Zoom Out
因 Show Entire Network
\# Show/Hide Grid
Show/Hide Node
(1) Show/Hide Zone

Step 2: Zoom In -> View Lane Configuration

Zooming can also be accomplished with the Page Up / Page Down keys, the + / - keys or the mouse wheel.

Step 3: Double-Click a Node to Show Node and Control Properties

Step 4: Single-Click a Link to Show Shape Points

Step 5: Double-Click a Link to Show Link Property

Step 6: Find Node / Find Link / Measure Distance

Step 7: Change Color Preferences for Background and Link Types

\$1/ Network Explorer - [TS2 "]		
	Edit View Window	Project Help
[13	Delete Object	Del
4	Add Feature Point	
	Remove Feature P	
Path:	Properties...	
${ }^{4000}$	Find Node	Ctrli +
	Find Link	$\mathrm{Ctrl}+\mathrm{A}(\mathrm{rc})$
	Distance	
	Preferences...	

Step 8: View Text File

NEXTA fetches input file names directly from the microsimulator control file.

Step 9: Select Display Mode to View Simulation Results

- Occupancy, Speed, Queue, Vehicles, Volume, Single Vehicle, Travel Time Contour

Cell-based Occupancy (I)

Cell-based Occupancy (II)

N= 01:08 / 23:20-[TS6 7]

<11
$11-17$
$17-25$
$25-35$
$35-45$
>45

Cell-based Occupancy (III)

Cell-based Occupancy (IV)

$\begin{aligned} 3 & \text { 01:08 } / 23: 20-[T S 6 *]\end{aligned}$
TSI File Edit View Window Project Help

Speed

NE 01:08 / 23:20-[156 "]
-

$\%$ of Speed Limit 区

>90
$90-80$
$80-70$
$70-60$
$60-50$
<50

Queue Length

Queue length = average number of stopped vehicles per lane * 7.5 meters

Vehicle

Vehicle locations are imported from snapshot file

Travel Time Contour

-Editor-
-Editor-
Occupancy
Speed
Queue
Vehicles
Volume
Single Vehicle
Travel Time Contour

When the display mode is set to Travel Time Contour Display Mode, the minimum path travel times between a designated destination and other nodes can be plotted on the network window.

A user can right-click a node to select menu "Define Destination to Calculate Travel Time Contour".

Travel Time Contour

The minimum path travel times between a designated destination and other nodes are plotted on the network window.

Travel Time Contour

The numbers on a node indicates the calculated minimum path travel time (in minutes) between the current node to the designated destination.

Travel Time Contour

A user can also customizes the thresholds of travel time categories displayed in travel time contour by selecting menu -> View -> Change LOS Interval in Travel Time Contour.

Step 10: Show Simulation Results at a Given Time

Simulation Time Clock: 1 hour: 33 min

Slider

Drag the slider of the clock bar to view simulation results at a given time of simulation horizon

Go to First Minute with Vehicles

A user can set the slider of the clock bar at the first minute with vehicles.

A snapshot file might only cover a short time period of the entire simulation horizon.

After a TRANSIMS project has been loaded, a user can click on menu->View ->Go to First Minute with Vehicles to jump to the first time stamp with snapshot data.

Step 11: Play Animation

Rewind, play, pause, stop
Remarks: Simulation clock is advanced at 1 -min interval

Step 12: Double-Click a Link to Show MOE Profile

Step 13: Configure MOE Display Dialog

-MOE: Density, Speed, Queue Length, Volume
-Start Time, End Time, Max Y
-Background color

Step 14: Multi-link Comparison

- Select multiple links (by using Ctrl+ mouse click) to display MOE time profiles simultaneously for multiple selected links, in the same or different projects.

- Data can be exported to a CSV file

Step 15: Find Paths

- Select an origin node,
- Right-click to select menu "Define Origin to Find Shortest Path",
- Select a destination node,
- Right-click to select menu "Define Destination to Find Shortest Path".

Step 16: Show Multiple Paths

- Path 1: 15 min

Path 3: 18.6 min

The path finding algorithm uses dynamic travel time calculated from simulated link speed at a given time.

Step 17: Create Nodes/Links

© Insert node (in the middle of a link)
\rightarrow Add one-way link
\leftrightarrows Add two-way link \longrightarrow
\square Add zone
Add stop sign
${ }^{\square}$ Add yield sign
Add pre-timed controller
Select link type

Add actuated controller

Step 18: Show Bottleneck Information

A user can click on menu
View->Bottleneck Info->
Bottlenecks to display bottleneck information on different links.

Step 18: Show Bottleneck Information

Step 19: Sort Link Performance Data

A user can click on menu Project->Sort Link Performance Data to sort, display and export the link performance data in a designated time window.
Link Performance

Index	$\longrightarrow \text { Select an MOE }$						
	Density	Speed	Queue	Volume	Bottleneck	LinkId	From ID
[0.0]	0.0		11.2 mps ,	0.0	$8, \quad 2.0$	v, 0.07	6 v
$\left[\begin{array}{ll}{[0.0]}\end{array}\right.$	0.0		11.7 mps ,	0.0	$8,2.0$	v, 0.26	110 v ,
$\left[\begin{array}{ll}{[0.0]}\end{array}\right.$			11.9 mps ,		$8,4.0$	$\mathrm{v}, 0.11$	[70 v ,
$\left[\begin{array}{ll}{[0.0]}\end{array}\right.$			12.1 mps ,		8, 2.0	$\mathrm{v}, 0.00$	[0 v ,
$\left[\begin{array}{ll}{[} & 0.0\end{array}\right]$	0.0		12.3 mps ,		$8, \quad 2.0$	v, 0.00	1 v
$\left[\begin{array}{ll}{[0.0]}\end{array}\right.$			12.4 mps ,		$8,3.0$	v, 0.00	1 v
$\left[\begin{array}{ll}{[0.0]}\end{array}\right.$	0.0		12.4 mps ,		$8,4.0$	$\mathrm{v}, 0.06$	113 v
$\left[\begin{array}{ll}{[} & 0.0\end{array}\right]$	0.0		12.6 mps ,	0.0	$8, \quad 2.0$	v, 0.34	31 v
$\left[\begin{array}{ll}{[0.0]}\end{array}\right.$	0.0		12.8 mps ,		$8,1.0$	v, 0.00	1 v
$\left[\begin{array}{ll}{[0.0]}\end{array}\right.$	0.0		12.9 mps ,		$8,1.0$	$\mathrm{v}, 0.00$	0 v
$\left[\begin{array}{ll}{[0.0]}\end{array}\right.$	0.0		12.9 mps ,		$8,3.0$	v, 0.00	0 v
$\left[\begin{array}{ll}{[0.0]}\end{array}\right.$	0.0		12.9 mps ,		$8,3.0$	v, 0.00	0 v
$\left[\begin{array}{lll}{[0.0]}\end{array}\right.$	0.0		12.9 mps ,		$8, \quad 3.0$	v, 1.20	68 v
$\left[\begin{array}{ll}{[0.0]}\end{array}\right.$			13.0 mps ,		$8,1.0$	$\mathrm{v}, 0.00$	2 v
$\left[\begin{array}{cc}{[0.0]} \\ {[0.0]}\end{array}\right.$	0.0		13.0 mps ,		8, 1.0	$\mathrm{v}, 1.24$	[485 v ,
[$\begin{array}{ll}{[0.01} \\ 0 & 0\end{array}$			13.0 mps ,	0.0	$8, \quad 2.0$	v, 0.00	0 v
		tatist Entarwo	cs Exporti	60	min	Export	

Switch Time "Inindow
$->$ To ID, Type , \#
v, 0.7 min min], $(34910:$
v, 0.1 min$],$ (3064: 2
v, 0.0 min), (3663 :
³ Microsoft Excel - data.csv \quad X :ब] Ele Edit Yiew Insert Format Iools Data Window Help Adobe PDF


```
#% %% A1: %
```


1 Link ID Start Time End Time Density (vSpeed (me Queve Le Volume (v From Nod To Node Link Type \# of Lanes

Step 20: Sort Movement Performance Data

A user can click on menu Project->Sort Movement Performance Data to sort, display and export the intersection movement performance data in a designated time window.

Turning Movement Delay
区

Step 21: Reload Simulation Data with Selected Files

As there might be multiple snapshot files for the same simulation run, a user can click on menu ->File->Reload Simulation Data with Selected Files to reselect the simulation files to be loaded.

Avg Occupancy
10. Alex. Occupancy Avz
3. Alex. 2005. Trip. Occupancy_Avg. txt
6. Alex. Occupancy_Avg
7. Alex. Occupancy_Avg
8. Alex. Occupancy_Avg
9. Alex. Occupancy_Avg

Performance

x

A user can select the snapshot, performance, and average occupancy files of a designated simulation run individually.

Future Development

- Save network data
- Run simulation directly
- Configure simulation scenarios
- Use vehicle trajectory information
- Enable travel time reliability analysis
- Enable impacted vehicle analysis
- Identify traffic bottlenecks through vehicle trajectory file

Vehicle Trajectory-based Traffic Analysis and Visualization

Potential GUI enhancement for TRANSIMS

1. Gap Analysis for Quantifying Traffic User Equilibrium

- Step 1: Read vehicle trajectory file
- Step 2: Group vehicles by
- OD pair od, departure time τ, path p
- Step 3: Output experienced mean travel time least travel time $\quad \pi_{o d}^{\tau}$
- Step 4: Calculate the gap function

$$
\operatorname{Gap}(r, \pi)=\sum_{o \in O} \sum_{d \in D} \sum_{\tau \in T} \sum_{p \in P(o, d, \tau)} r_{o d p}^{\tau}\left[c_{o d p}^{\tau}(r)-\pi_{o d}^{\tau}\right]
$$

Thterface

2: User Attributes Filter Information Class:	Vehicle Type:			Departure time:		Time Interval:	
All Classes	*	LOV	\cdots	60		30	

[^0]```
199-> 116, 1.52 ml, © }60.00\textrm{min},\cdots,0.0\textrm{min
 116-> 19,0.38 ml,@ 60.6 min, 56.8 m//h,0.0 min
 19-> 23,0.19 ml,@ 61.0 min, 56.8 m//h,0.0 min
```

Path 1: 1,949 vehicles 12.89 min


Path 5: 61 vehicles

### 11.72 min



## 2. Travel Time Reliability Analysis

- Step 1: Read vehicle trajectory file
- Step 2: Group vehicles by
- OD pair od, departure time $\tau$, path $p$
- Step 3: Reliability Statistics Output:
- Mean, median, variance, standard deviation, range, skewness, percentiles, buffer time and index


## Path-level Travel Time Reliability Visualization



## Link-level Traffic Reliability Visualization



## Network-level Traffic Reliability Visualization



## 3. Impacted Vehicle Analysis

- Fully utilize vehicle trajectory data at different cases to evaluate the system-wide impacts of incident, work zone, toll link, and/or VMS
- Do nothing vs. alternative cases
- Impacted vehicles are vehicles passing through the link of interest in the base case
- Diverted vs. non-diverted vehicles in alternative case

Inpacted Yehicle Analysis


| Impacted Type: | Information Class: |
| :--- | :--- |
| All impacted vehicles | User Equilibirum |
| - Non-diverted vehicles | All Classes  <br> - Diverted vehicles En-route Info <br> System Optimum  <br> Unresponsive (hist info)  |
| Vehicle List: | User Equilibinm |
| Id. departure time, travel time | VMS Responsive (pretrip info) |



0 impacted vehicles, avg travel time $=0.00 \mathrm{~min}$

## 4. Bottleneck Identification

- Geometric Bottleneck
- Lane drop
- Weaving
- Merge
- Use vehicle trajectory to detect speed transition points along vehicle paths
- Identify the head and tail of congestion/ bottleneck
- Use multi-day vehicle samples to distinguish recurring and non- recurring bottlenecks (under stochastic capacity)




## Merge/Lane Drop Bottleneck



## I see congestion everywhere, but where is the active bottleneck?




[^0]:    ${ }^{5}$ : Link List
    From Node -> To Node, length, arrival time, speed, stop time

